首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
化学   23篇
晶体学   1篇
力学   1篇
物理学   6篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
2.
Salicylaldimine based schiff base receptors with different substituents showing fluorescent enhancement in the presence of fluoride anion was visualized through naked eye as well as by change in spectral properties (UV–vis and fluorescent techniques). The reason for such fluorescence enhancement may be due to hydrogen bond interaction between receptor recognition site and fluoride anion. Such a hydrogen bond interaction creates a six-membered transition state, which avoids quenching processes. To support this, fluorescence enhancement factor (FEF) was calculated and it was found to be more (FEF = 652) for –NO2 substituted receptor compared to other receptors.  相似文献   
3.
Synthetic biological systems are becoming more and more feasible for commercial and medical purposes through the genetic engineering of several components. The simple assembly of a genetic circuit was shown to stimulate the removal of copper by bacteria through the engineering of a two-component system. The CusSR two-component systems is a regulator of Escherichia coli copper homeostatic system. In this system, genetic circuits of CusSR were fused to a cell surface display system for metal adsorption; this system is suitable for the display of a copper binding peptide through outer membrane protein C (OmpC). E. coli ompC codes for an outer membrane pore protein (porin) are induced at high osmolarity and temperature, which can also be used as an anchoring motif to accept the passenger proteins. The bacteria that produce the chimeric OmpC containing the copper binding peptide adsorbed maximum concentrations of 92.2 μmol of Cu(2+)/gram dry weight of bacterial cells. This synthetic bacterial system senses the specific heavy metal and activates a cell surface display system that acts to remove the metal.  相似文献   
4.
Some novel compounds of bis/mono 1-aryl-1H-tetrazole-5-carboxylic acid are synthesized by the hydrolysis of two different synthesized esters, they are ethyl-1-aryl-1H-tetrazole-5-carboxylate and ethyloxo(1-aryl-1H-tetrazol-5-yl)acetate. The ethyl-1-aryl-1H-tetrazole-5-carboxylate is resistant to get hydrolyzed, whereas the ethyloxo(1-aryl-1H-tetrazol-5-yl) acetate undergoes hydrolysis process and converts the ester to title compound. All the synthesized compounds are characterized by IR, 1H and 13C NMR, mass and elemental analysis.The ethyl-1-aryl-1H-tetrazole-5-carboxylateis optimized by DFT B3LYP method and the HOMO and LUMO energy is 5.14?eV and also there is a formation of a weak bond between O18 and C8 as observed from the AIM analysis result.  相似文献   
5.
6.
A silver resistant Bacillus sp. was isolated through exposure of an aqueous AgNO3 solution to the atmosphere. Silver nanoparticles were synthesized using these airborne bacteria (Bacillus sp.). Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analyses confirmed that silver nanoparticles of 5–15 nm in size were deposited in the periplasmic space of the bacterial cells; a preferable cell surface location for the easy recovery of biogenic nanoparticles.  相似文献   
7.
Thermostable xylanase isoforms T70 and T90 were purified and characterized from the xerophytic Opuntia vulgaris plant species. The enzyme was purified to homogeneity employing three consecutive steps. The purified T70 and T90 isoforms yielded a final specific activity 134.0 and 150.8 U mg?1 protein, respectively. The molecular mass of these isoforms was determined to be 27 kDa. The optimum pH for the T70 and T90 xylanase isoforms was 5.0 and the temperature for optimal activity was 70 and 90 °C, respectively. The Km value of T70 and T90 enzyme isoforms was 3.49, 2.1 mg ml?1, respectively when oat spelt xylan was used as a substrate. The T70 had a Vmax of 10.4 μmol min?1 mg?1, and T90 had a Vmax of 8.9 μmol min?1 mg?1, respectively. In the presence of 10 mM Co2+, and Mn2+ the activity of T70 and T90 isoforms increased, where as 90 % inhibition was noted with of the use 10 mM Hg2+, Cd2+, Cu2+, Zn2+ while partial inhibition was observed in the presence of Fe3+, Ni2+, Ca2+and Mg2+. The T70 and T90 isoforms retained nearly 50 % activity in the presence of 2.0 M urea, while use of 40 mM SDS lowered the activity nearly 38–41 %. The substrate specificity of both T70 and T90 isoforms showed maximum activity for oat spelt xylan. Western blot, immunodiffusion, and in vitro inhibition assays confirmed reactivity of the T90 isoform with polyclonal anti-T90 antibody raised in rabbit, as well as cross-reactivity of the antibody with the T70 xylanase isoform.  相似文献   
8.
In this study, we constructed amino acid biosensors that can be used as a high-throughput system to screen microorganisms that produce glutamate. The biosensors are based on two-component regulatory systems (TCRSs) combined with green fluorescent protein (GFP) as a reporter. A chimeric DegS/EnvZ (DegSZ) TCRS was constructed by fusing the N-terminal domain of the sensor kinase DegS from Planococcus sp. PAMC21323 with the catalytic domain of the osmosensor EnvZ from Escherichia coli to control expression of gfp in response to glutamate. gfp was controlled by the ompC promoter through the activated response regulator OmpR-P. The chimeric TCRS-based biosensors showed a 4-fold increase in the fluorescent signal after adding glutamate. A linear correlation was observed between fluorescence intensity and exogenously added glutamate concentration. The chimeric TCRS-based biosensor was used to determine glutamate concentration at the single-cell level by fluorescence-activated cell sorting. Therefore, this biosensor can be used to isolate novel gene products and optimize pathways involved in amino acid production.  相似文献   
9.
We carry out first principles density functional theory calculations of non-lone pairs, namely, La and Y substituted orthorhombic LuMnO3, to verify the generality of symmetry breaking effects observed in the lone pair cations substituted orthorhombic rare earth manganites. Our calculations revealed that similar to lone pair cations ordering at the A-site of LuMnO3, non-lone pair cations ordering also results in the lowering of the symmetry thereby proving that the symmetry breaking with A-site ordering is a generic effect. Interestingly, we were able to stabilize the large radius La substituted LuMnO3 into an E-type antiferromagnetic (E-AFM) phase, in contrast to the normally expected A-type antiferromagnetic (A-AFM) phase of large radius rare earth manganites such as LaMnO3.  相似文献   
10.
A tremendous breakthrough was required for the researchers trying to find a way to photodecomposition of water by using semiconductor photocatalysts without electricity. In this regard, we attempted to prepare the heteropolyacid (HPA)-encapsulated TiHY zeolite a new photocatalyst mimicking the plant photosynthetic system. This photocatalyst (0.3 g/40 ml) was observed to generate hydrogen (4.08±0.7 μl/h) and oxygen (6.86±0.7 μl/h) from the aqueous solutions upon illumination by two photon reactions (UV and visible lights), which is quite analogous to the “Z-scheme” mechanism for plant photosynthetic systems. The turnover number of the photocatalyst was determined to be 11 with the quantum yield of the water splitting about 27±6% at 352 nm. Thus, this inorganic material must be very useful as a reaction center mimicking the plant photosynthetic system without electrical energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号