首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2013年   1篇
  2012年   1篇
  1994年   1篇
  1992年   1篇
  1986年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Resonance‐enhanced multiphoton ionisation time‐of‐flight mass spectrometry (REMPI‐TOFMS) enables the fast and sensitive on‐line monitoring of volatile organic compounds (VOC) formed during coffee roasting. On the one hand, REMPI‐TOFMS was applied to monitor roasting gases of an industrial roaster (1500 kg/h capacity), with the aim of determining the roast degree in real‐time from the transient chemical signature of VOCs. On the other hand, a previously developed μ‐probe sampling device was used to analyse roasting gases from individual coffee beans. The aim was to explore fundamental processes at the individual bean level and link these to phenomena at the batch level. The pioneering single‐bean experiments were conducted in two configurations: (1) VOCs formed inside a bean were sampled in situ, i.e. via a drilled μ‐hole, from the interior, using a μ‐probe (inside). (2) VOCs were sampled on‐line in close vicinity of a single coffee bean's surface (outside). The focus was on VOCs originating from hydrolysis and pyrolytic degradation of chlorogenic acids, like feruloyl quinic acid and caffeoyl quinic acid. The single bean experiments revealed interesting phenomena. First, differences in time–intensity profiles between inside versus outside (time shift of maximum) were observed and tentatively linked to the permeability of the bean's cell walls material. Second, sharp bursts of some VOCs were observed, while others did exhibit smooth release curves. It is believed that these reflect a direct observation of bean popping during roasting. Finally, discrimination between Coffea arabica and Coffea canephora was demonstrated based on high‐mass volatile markers, exclusively present in spectra of Coffea arabica. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
2.
A real-time automated process control tool for coffee roasting is presented to consistently and accurately achieve a targeted roast degree. It is based on the online monitoring of volatile organic compounds (VOC) in the off-gas of a drum roaster by proton transfer reaction time-of-flight mass spectrometry at a high time (1 Hz) and mass resolution (5,500 m/Δm at full width at half-maximum) and high sensitivity (better than parts per billion by volume). Forty-two roasting experiments were performed with the drum roaster being operated either on a low, medium or high hot-air inlet temperature (= energy input) and the coffee (Arabica from Antigua, Guatemala) being roasted to low, medium or dark roast degrees. A principal component analysis (PCA) discriminated, for each one of the three hot-air inlet temperatures, the roast degree with a resolution of better than ±1 Colorette. The 3D space of the three first principal components was defined based on 23 mass spectral profiles of VOCs and their roast degree at the end point of roasting. This provided a very detailed picture of the evolution of the roasting process and allowed establishment of a predictive model that projects the online-monitored VOC profile of the roaster off-gas in real time onto the PCA space defined by the calibration process and, ultimately, to control the coffee roasting process so as to achieve a target roast degree and a consistent roasting.  相似文献   
3.
4.
Recent mass spectroscopic studies of continuous cluster beams resulting from supersonic expansions of alkali metal vapor have led to the postulation of islands of enhanced thermodynamic stability among the clusters produced. We discuss the various assumptions being made in converting ion abundances measured in these mass spectra into information about neutral stabilities. In this connection a number of experiments are described which allow insight into unimolecular dissociation of alkali cluster ions and into neutral cluster growth.  相似文献   
5.
The yield of C 60 + ions reflected from the surface of graphite is found to be a bimodal function of the energy of impact. Below 140 eV (6 km/s), the yield decreases with energy and the scattering time-of-flight peak is sharp. Above 170 eV, the yield increases, but the peak is broad and asymmetric, corresponding to delayed electron emission from an impact-heated, neutralized cluster. There is also evidence for fragmentation to C58 and C56. The emission process may be analogous to that reported for scattered C 60 ? . Application of statistical rate theory to either observation (C 60 ± ) gives an estimated 25–30 percent transfer of impact energy into cluster internal modes. The decreasing yield at highest energies (>400 eV) may result from adhesion processes (C60-surface bonding) that could also account for the absence of delayed electron emission in C60-silicon collisions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号