首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
化学   24篇
晶体学   1篇
物理学   12篇
  2013年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2000年   1篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
  1955年   1篇
  1938年   2篇
  1937年   1篇
  1936年   2篇
  1935年   2篇
  1933年   1篇
  1932年   2篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
Band structures of SbSBr and SbSeI have been obtained by using the empirical pseudopotential method (EPM) to fit our measured optical reflectivity data and earlier gap measurements. An SbSI band structure has been determined by fitting to earlier reflectivity and Raman spectroscopic data, and the results agree better with the data than do the results of an earlier preliminary EPM calculation. Secondary conduction band minima may in part be responsible for the observed microwave oscillation (Gunn effect) in SbSI. Similar minima in SbSBr and SbSeI are reported, suggesting these crystals might also show microwave properties. The total densities of states are presented.  相似文献   
2.
3.
4.
5.
6.
A number of approaches to the enantioselective synthesis of (R)- and (S)-3-amino-3,4-dihydro-1H-[1,8]naphthyridin-2-one were studied. A novel one-pot asymmetric reduction/lactamization provided the desired products in high yield and enantiomeric excess.  相似文献   
7.
It is proposed that the intrinsic breakdown field strenght, EB, can be determined from P=σE2B where P is the power absorbed from an incident pulse of X-rays and σ is the measured conductivity.  相似文献   
8.
Detection of tobacco smoke deposition by hyperpolarized krypton-83 MRI   总被引:1,自引:0,他引:1  
Despite the importance of the tobacco smoke particulate matter in the lungs to the etiology of pulmonary disease in cigarette smokers, little is currently known about the spatial distribution of particle deposition or the persistence of the resulting deposits in humans, and no satisfactory technique currently exists to directly observe tobacco smoke condensate in airways. In this proof-of-principle work, hyperpolarized (hp) 83Kr MRI and NMR spectroscopy are introduced as probes for tobacco smoke deposition in porous media. A reduction in the hp-83Kr longitudinal (T1) relaxation of up to 95% under near-ambient humidity, pressure and temperature conditions was observed when the krypton gas was brought into contact with surfaces that had been exposed to cigarette smoke. This smoke-induced acceleration of the 83Kr self-relaxation was observed for model glass surfaces that, in some experiments, were coated with bovine lung surfactant extract. However, a similar effect was not observed with hp-(129)Xe indicating that the 83Kr sensitivity to smoke deposition was not caused by paramagnetic species but rather by quadrupolar relaxation due to high adsorption affinity for the smoke deposits. The 83Kr T1 differences between smoke-treated and untreated surfaces were sufficient to produce a strong contrast in variable flip angle FLASH hp-83Kr MRI, suggesting that hp-83Kr may be a promising contrast agent for in vivo pulmonary MRI.  相似文献   
9.
Heterobimetallic Lewis acids M 3(THF) n (BINOLate) 3Ln [M = Li, Na, K; Ln = lanthanide(III)] are exceptionally useful asymmetric catalysts that exhibit high levels of enantioselectivity across a wide range of reactions. Despite their prominence, important questions remain regarding the nature of the catalyst-substrate interactions and, therefore, the mechanism of catalyst operation. Reported herein are the isolation and structural characterization of 7- and 8-coordinate heterobimetallic complexes Li 3(THF) 4(BINOLate) 3Ln(THF) [Ln = La, Pr, and Eu], Li 3(py) 5(BINOLate) 3Ln(py) [Ln = Eu and Yb], and Li 3(py) 5(BINOLate) 3La(py) 2 [py = pyridine]. Solution binding studies of cyclohexenone, DMF, and pyridine with Li 3(THF) n (BINOLate) 3Ln [Ln = Eu, Pr, and Yb] and Li 3(DMEDA) 3(BINOLate) 3Ln [Ln = La and Eu; DMEDA = N, N'-dimethylethylene diamine] demonstrate binding of these Lewis basic substrate analogues to the lanthanide center. The paramagnetic europium, ytterbium, and praseodymium complexes Li 3(THF) n (BINOLate) 3Ln induce relatively large lanthanide-induced shifts on substrate analogues that ranged from 0.5 to 4.3 ppm in the (1)H NMR spectrum. X-ray structure analysis and NMR studies of Li 3(DMEDA) 3(BINOLate) 3Ln [Ln = Lu, Eu, La, and the transition metal analogue Y] reveal selective binding of DMEDA to the lithium centers. Upon coordination of DMEDA, six new stereogenic nitrogen centers are formed with perfect diastereoselectivity in the solid state, and only a single diastereomer is observed in solution. The lithium-bound DMEDA ligands are not displaced by cyclohexenone, DMF, or THF on the NMR time scale. Use of the DMEDA adduct Li 3(DMEDA) 3(BINOLate) 3La in three catalytic asymmetric reactions led to enantioselectivities similar to those obtained with Shibasaki's Li 3(THF) n (BINOLate) 3La complex. Also reported is a unique dimeric [Li 6(en) 7(BINOLate) 6Eu 2][mu-eta (1),eta (1)-en] structure [en = ethylenediamine]. On the basis of these studies, it is hypothesized that the lanthanide in Shibasaki's Li 3(THF) n (BINOLate) 3Ln complexes cannot bind bidentate substrates in a chelating fashion. A hypothesis is also presented to explain why the lanthanide catalyst, Li 3(THF) n (BINOLate) 3La, is often the most enantioselective of the Li 3(THF) n (BINOLate) 3Ln derivatives.  相似文献   
10.
[reaction: see text] We report the catalytic asymmetric allylation of ketones under highly concentrated reaction conditions with a catalyst generated from titanium tetraisopropoxide and BINOL (1:2 ratio) in the presence of isopropanol. This catalyst promotes the addition of tetraallylstannane to a variety of ketones to produce tertiary homoallylic alcohols in excellent yield (80-99%) with high enantioselectivities (79-95%). The resulting homoallylic alcohols can also be epoxidized in situ using tert-butyl hydroperoxide (TBHP) to afford cyclic epoxy alcohols in high yield (84-87%).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号