首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Fu  Cen-Feng  Zhao  Chuanyu  Zheng  Qijing  Li  Xingxing  Zhao  Jin  Yang  Jinlong 《中国科学:化学(英文版)》2020,63(8):1134-1141
The covalent triazine framework CTF-1 as a member of the two-dimensional covalent organic frameworks(COFs) is a category of novel metal-free photocatalysts for water splitting. The large band gap severely restricts its energy conversion efficiency. By means of the first-principles calculations, we proposed the decoration of CTF-1 by anchoring halogen atoms onto benzene moieties for improving the solar-to-hydrogen(STH) efficiency. The electronic structures reveal that the halogen substitution successfully decreases the band gap of CTF-1. Meanwhile, the calculated free energy changes along the reaction pathway indicate that all these COFs can spontaneously drive overall water splitting under light irradiation in a specific acid-base environment. The time-dependent ab initio non-adiabatic molecular dynamics simulations suggest that the electron-hole recombination periods of these COFs fall in a few to tens of nanoseconds. Excitingly, CTF-1 modified by linking six iodine atoms onto the benzene ring in the para-position(CTF-1-6I) shows a quite low band gap of 2.81 eV, indicating that it is a visible-light driven COF for overall photocatalytic water splitting. Correspondingly, CTF-1-6I also exhibits an extraordinarily promising STH efficiency of 3.70%, which is an order magnitude higher than that of the pristine CTF-1.  相似文献   
2.
Electron–hole recombination and photocorrosion are two challenges that seriously limit the application of two-dimensional (2D) transition metal dichalcogenides (TMDs) for photocatalytic water splitting. In this work, we propose a 2D van der Waals MoSe2/Ti2CO2 heterojunction that features promising resistance to both electron–hole recombination and photocorrosion existing in TMDs. By means of first-principles calculations, the MoSe2/Ti2CO2 heterojunction is demonstrated to be a direct Z-scheme photocatalyst for overall water splitting with MoSe2 and Ti2CO2 serving as photocatalysts for hydrogen and oxygen evolution reactions, respectively, which is beneficial to electron–hole separation. The ultrafast migration of photo-generated holes from MoSe2 to Ti2CO2 as well as the anti-photocorrosion ability of Ti2CO2 are responsible for photocatalytic stability. This heterojunction is experimentally reachable and exhibits a high solar-to-hydrogen efficiency of 12%. The strategy proposed here paves the way for developing 2D photocatalysts for water splitting with high performance and stability in experiments.

The two challenges of electron–hole recombination and photocorrosion for two-dimensional transition metal dichalcogenides in the application of photocatalytic water splitting are simultaneously suppressed by rational design of heterojunctions.  相似文献   
3.
The direct Z-scheme system constructed by two-dimensional (2D) materials is an efficient route for hydrogen production from photocatalytic water splitting. In the present work, the 2D van der Waals (vdW) heterojunctions of MoSe2/SnS2, MoSe2/SnSe2, MoSe2/CrS2, MoTe2/SnS2, MoTe2/SnSe2, and MoTe2/CrS2 are proposed to be promising candidates for direct Z-scheme photocatalysts and verified by first principles calculations. Perpendicular electric field is induced in these 2D vdW heterojunctions, which enhances the efficiency of solar energy utilization. Replacing MoSe2 with MoTe2 not only facilitates the interlayer carrier migration, but also improves the optical absorption properties for these heterojunctions. Excitingly, the 2D vdW MoTe2/CrS2 heterojunction is demonstrated, for the first time, to be 2D near-infrared-light driven photocatalyst for direct Z-scheme water splitting. © 2018 Wiley Periodicals, Inc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号