首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
化学   25篇
晶体学   1篇
数学   2篇
物理学   31篇
  2019年   1篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2003年   4篇
  2002年   2篇
  2000年   3篇
  1999年   6篇
  1995年   1篇
  1994年   1篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有59条查询结果,搜索用时 390 毫秒
1.
Theoretical calculations of a model for tyrosine oxidation in photosystem II are presented. In this model system, an electron is transferred to ruthenium from tyrosine, which is concurrently deprotonated. This investigation is motivated by experimental measurements of the dependence of the rates on pH and temperature (Sj?din et al. J. Am. Chem. Soc. 2000, 122, 3932). The mechanism is proton-coupled electron transfer (PCET) at pH < 10 when the tyrosine is initially protonated and is single electron transfer (ET) for pH > 10 when the tyrosine is initially deprotonated. The PCET rate increases monotonically with pH, whereas the single ET rate is independent of pH and is 2 orders of magnitude faster than the PCET rate. The calculations reproduce these experimentally observed trends. The pH dependence for the PCET reaction arises from the decrease in the reaction free energies with pH. The calculations indicate that the larger rate for single ET arises from a combination of factors, including the smaller solvent reorganization energy for ET and the averaging of the coupling for PCET over the reactant and product hydrogen vibrational wave functions (i.e., a vibrational overlap factor in the PCET rate expression). The temperature dependence of the rates, the solvent reorganization energies, and the deuterium kinetic isotope effects determined from the calculations are also consistent with the experimental results.  相似文献   
2.
3.
4.
Summary A differential pulse polarographic method for the determination of oxytetracycline in urine and human serum in acid media (HClO4 of pH 2) is proposed. The effects of the amount of sample taken and the concentration of HClO4 present were investigated. The detection limit was 5.5×10–6 mol/l. The standard deviation of the determination of 5.5×10–5 mol/l of oxytetracycline in 2 ml of urine was 1.7×10–6 mol/l and that of the determination of 5.5×10–5 mol/l of oxytetracycline in 2 ml of human serum was 1.9×10–6 mol/l.
Bestimmung von Oxytetracyclin in Urin und Humanserum durch Differential-Pulspolarography
  相似文献   
5.
Methyl or silyl dissociation in the CH(2)=CHCH(2)-XH(3) (a-XH(3)(*)(+)) and CH(2)=CHCH=CHCH(2)-XH(3) (p-XH(3)(*) (+)) radical cations (X = C, Si) yields a(+) or p(+) and XH(3)(*). Similarly, the radical anions a-CH(3)(*) (-) and p-CH(3)(*) (-) give the pi-delocalized anion and CH(3)(*) preferentially. In contrast, a-SiH(3)(*) (-) and p-SiH(3)(*-) prefer to dissociate into the pi-delocalized radical and silide. All reactions are endoergic: by 43-50 kcal mol(-)(1) in the radical cations, and easier to some extent in the radical anions, that require 29-33 (X = C) and 13-14 kcal mol(-)(1) (X = Si). The fragmentation energy profiles do not present significant barriers for the backward process in the case of the radical cations. All radical anions exhibit an energy maximum along the dissociation pathway, but the barrier is lower than the dissociation limit. Fragmentation is "activated" more in the anions than in the cations with respect to homolysis in the corresponding neutrals (that requires 72-81 kcal mol(-)(1)). Wave function analysis indicates that the C-X bond cleavage in the hydrocarbon radical ions, although formally comparable to a homolytic process, is at variance with this model, due to the spin recoupling of one of the two C-X bond electrons with the originally unpaired electron. This is basically true also for the silyl-substituted radical anions, in which the initial more delocalized charge distribution might suggest some heterolytic character of the bond cleavage.  相似文献   
6.
7.
This work allowed the identification of major transformation products (TPs) of acetamiprid (ACTM) during Fenton process. Acetamiprid is a chloronicotinoid insecticide widely used around the world for its characteristics (high insecticidal activity, good systemic properties, suitable field stability, etc.). The degradation of the parent molecule and the identification of the main TPs were evaluated in different water matrices (demineralized water and real agro-food industrial wastewater). TPs of acetamiprid generated by Fenton experiments were monitored and identified by liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC–QTOF–MS/MS). Up to 14 TPs were characterized based on the accurate mass of the molecular ion and fragment ions obtained in both full-scan and MS/MS modes. Most of them were eliminated after 75 min of treatment time in demineralized water. However, in real agro-food industrial wastewater, most of them were eliminated at 90 min of treatment time, demonstrating the influence of the matrix composition on the studied compound degradation.  相似文献   
8.
Catalytic activity of Os(VIII) in the oxidation of some twenty organic sulfides with sodium salt of N-chlorobenzenesulfonamide (CAB) has been investigated in alkaline (pH8.7) t-butanol–water (1:1 v/v) medium. Significant retarding influence of [OH] on the reactivity is exhibited. The catalysed reaction is strongly accelerated in the presence of Hg(II). Imperfections are observed in the linear Hammett relationship in the case of –NO2 substituents.  相似文献   
9.
Nano titanium dioxide (nTiO2), generally considered to be toxicologically inert, is manufactured in large quantities and extensively applied in consumer products. The small size and large surface area endow them with an active group or intrinsic toxicity. Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of (bio) chemical applications. One of the great advantages of this technique is its ability to provide information on the concentration, structure and interaction of biochemical molecules in their microenvironments within intact cells and tissues, non-destructively. Zebrafish (Danio rerio), one of the most important vertebrate model organisms used in developmental biology, are increasingly used in biomedical research, particularly as a model of human disease. In the present work, an attempt is made to study the effect of titanium dioxide, both nano and bulk, on the microenvironment of the liver tissues of Zebrafish using FT-Raman spectroscopy. The results of the present study suggest that TiO2 exposure demonstrate a marked influence on the microenvironments of the liver tissues of Zebrafish. A shift to a higher wavenumber and an increase in the intensity of the band at ∼1087 cm−1 in the TiO2 exposed tissues suggest that some of the conformational changes resulting from the alkali recovery process takes place due to TiO2 exposure. The decreased intensity ratio (I3220/I3400) observed in the titanium-exposed tissues suggests a decreased water domain size, which could be interpreted in terms of weaker hydrogen-bonded molecular species of water in the TiO2 exposed tissues. The observed shift of COO bands to higher frequencies shows the disruption of salt bridges as a result of a change in the oppositely charged partners and due to the enhanced random coil conformation. The variation in the intensity ratio of the tyrosyl doublet (I858/I825) indicates variation in the hydrogen bonding of the phenolic hydroxyl group due to TiO2 exposure. The results further suggest that the microenvironments are greatly altered due to titanium nano exposure when compared to titanium bulk. In conclusion, the results indicate that FT-Raman spectroscopy might be a useful tool for rapid assessment of nano particle biological interactions.  相似文献   
10.
Current methods for stable oxygen isotopic (delta (18)O) analysis of soil water rely on separation of water from the soil matrix before analysis. These separation procedures are not only time consuming and require relatively large samples of soil, but also have been shown to introduce a large potential source of error. Current research at Queen's University Belfast is focused on using direct equilibration of CO(2) with the pore water to eliminate this extraction step using the automated Multiprep system and a Micromass Prism III isotope ratio mass spectrometer (IRMS). The findings of this research indicate the method is less time consuming, more reliable, and reproducible to within accepted limits (+/-0.1% per thousand delta (18)O). In this study the direct equilibration method is used to analyse delta (18)O tracer profiles in the unsaturated zone of field soils, concurrently with chloride tracer profiles, which can be used to assess infiltration rates and mechanisms through the unsaturated zone. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号