首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16496篇
  免费   519篇
  国内免费   82篇
化学   11069篇
晶体学   108篇
力学   387篇
综合类   5篇
数学   2196篇
物理学   3332篇
  2023年   128篇
  2022年   436篇
  2021年   485篇
  2020年   367篇
  2019年   396篇
  2018年   383篇
  2017年   314篇
  2016年   647篇
  2015年   532篇
  2014年   603篇
  2013年   1003篇
  2012年   1092篇
  2011年   1289篇
  2010年   812篇
  2009年   773篇
  2008年   1119篇
  2007年   981篇
  2006年   894篇
  2005年   748篇
  2004年   673篇
  2003年   519篇
  2002年   443篇
  2001年   246篇
  2000年   250篇
  1999年   149篇
  1998年   154篇
  1997年   141篇
  1996年   140篇
  1995年   105篇
  1994年   115篇
  1993年   118篇
  1992年   131篇
  1991年   80篇
  1990年   62篇
  1989年   50篇
  1988年   42篇
  1987年   40篇
  1986年   46篇
  1985年   53篇
  1984年   66篇
  1983年   46篇
  1982年   41篇
  1981年   57篇
  1980年   42篇
  1979年   39篇
  1978年   42篇
  1977年   35篇
  1976年   21篇
  1974年   18篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The degree of phase separation in several moisture‐cured poly(urethane urea)s (PUUs) was studied by FTIR spectroscopy, wide angle X‐ray diffraction (WAXD), and temperature‐modulated differential scanning calorimetry (TMDSC). This latter technique was shown to be particularly useful in analysing the degree of phase separation in PUU polymers. Both phase mixing and phase segregation coexisted in the PUUs and the degree of phase separation increased as the urea hard segment (HS) content in the PUU increased. The maximum solubility of urea HSs into the polyol soft segments (SSs) was achieved for 50 wt % urea HS content in diol‐based PUUs, whereas for triol‐based PUUs the highest solubility between HS and SS was reached for lower urea HS amount. Finally, the higher the urea HS content the higher the extent of phase separation in the PUU. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3034–3045, 2007  相似文献   
2.
This article explores the synthesis of a novel methacrylic macromonomer with an amphiphilic character derived from poly(ethylene glycol) tert‐octylphenyl ether (MT) and its respective homopolymer. To know their reactivity in radical copolymerization reactions with methyl methacrylate (MMA), a model monomer (MTm) was synthesized to determine the reactivity ratios and compare them with the low molar fractions of copolymers of MT with MMA because they were difficult to isolate. They were rMTm = 0.97 and rMMA = 0.95. The compositional diagrams when representing the weight fraction of MT and MTm in the feed and the copolymer suggested that a clear correlation exists between the experimental points of the model monomer MTm and the macromonomer MT ones, suggesting that the length of the side poly(ethylene oxide) chain does not affect the reactivity of the methacrylic double bond in the prepared monomers for this type of polymerization reaction. The reactivity ratios of the copolymers have a tendency for the formation of random or Bernoullian copolymers. The glass‐transition temperatures (Tg's) of the prepared copolymers were determined by differential scanning calorimetry, deviated from the Fox equation, and discussed on the basis of treatments that consider the influence of the monomeric units along the copolymer chains, determining the Tg of the corresponding alternating dyads. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1641–1649, 2003  相似文献   
3.
This article deals with the synthesis of hydrophilic methacrylic monomers derived from ethyl pyrrolidone [2‐ethyl‐(2‐pyrrolidone) methacrylate (EPM)] and ethyl pyrrolidine [2‐ethyl‐(2‐pyrrolidine) methacrylate (EPyM)] and their respective homopolymers. For the determination of their reactivity in radical copolymerization reactions, both monomers were copolymerized with methyl methacrylate (MMA), the reactivity ratios being calculated by the application of linear and nonlinear mathematical methods. EPM and MMA had ratios of rEPM = 1.11 and rMMA = 0.76, and this indicated that EPM with MMA had a higher reactivity in radical copolymerization processes than vinyl pyrrolidone (VP; rVP = 0.005 and rMMA = 4.7). EPyM and MMA had reactivity ratios of rEPyM = 1.31 and rMMA = 0.92, and this implied, as for the EPM–MMA copolymers, a tendency to form random or Bernoullian copolymers. The glass‐transition temperatures of the prepared copolymers were determined by differential scanning calorimetry (DSC) and were found to adjust to the Fox equation. Total‐conversion copolymers were prepared, and their behavior in aqueous media was found to be dependent on the copolymer composition. The swelling kinetics of the copolymers followed water transport mechanism case II, which is the most desirable kinetic behavior for a swelling controlled‐release material. Finally, the different states of water in the hydrogels—nonfreezing water, freezing bound water, and unbound freezing water—were determined by DSC and found to be dependent on the hydrophilic and hydrophobic units of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 395–407, 2003  相似文献   
4.
Phytochemical investigation of the aerial parts of three Baccharis species (Asteraceae family) was performed using HPLC and chemometric methods, with the objective of distinguishing between three morphologically very similar species: Baccharis genistelloides Persoon var. trimera (Less.) DC, B. milleflora (Less.) DC and B. articulata (Lam.) Persoon. With the help of Principal Component Analysis (PCA) and variance weights, it was possible to characterize the chromatographic profiles of the alcoholic extracts of the three species. Application of Soft Independent Modeling of Class Analogy (SIMCA) and K-Nearest Neighbor (KNN) methods on a training set of 74 extracts resulted in models that correctly classified all eight samples in an independent test set.  相似文献   
5.
The influence of the loading path on the failure locus of a composite lamina subjected to transverse compression and out-of-plane shear is analyzed through computational micromechanics. This is carried out using the finite element simulation of a representative volume element of the microstructure, which takes into account explicitly fiber and matrix spatial distribution within the lamina. In addition, the actual failure mechanisms (plastic deformation of the matrix and interface decohesion) are included in the simulations through the corresponding constitutive models. Two different interface strength values were chosen to explore the limiting cases of composites with strong or weak interfaces. It was found that failure locus was independent of the loading path for the three cases analyzed (pseudo-radial, compression followed by shear and shear followed by compression) in the composites with strong and weak interfaces. This result was attributed to the fact that the dominant failure mechanism in each material was the same in transverse compression and in shear. Failure is also controlled by the same mechanisms under a combination of both stresses and the failure locus depended mainly on the magnitude of the stresses that trigger fracture rather than in the loading path to reach the critical condition.  相似文献   
6.
Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in high-power electronics. Purity control and crystalline quality of the obtained samples are of paramount importance and their optimization is a subject of active research. In the process of such studies, we have obtained high purity CVD diamond monocrystals with unusual morphologies, namely with apparent {1 1 3} stable faces. This phenomenon has led us to examine the process of CVD diamond growth and build up a 3D geometrical model, presented here, describing the film growth as a function of time. The model has been able to successfully describe the morphology of our obtained crystals and can be used as a predictive tool to predetermine the shape and size of a diamond crystal grown in a given process configuration. This renders accessible control of desirable properties such as largest usable diamond surface area and/or film thickness, before the cutting and polishing manufacture steps take place. The two latter steps are more sensitive to the geometry of the growth sectors, which will be addressed in a companion paper.Our model, applicable to the growth of any cubic lattice material, establishes a complete mapping of the final morphology state of growing diamond, as a function of the growth rates of the crystalline planes considered, namely {1 0 0}, {1 1 1}, {1 1 0}, and {1 1 3} planes, all of which have been observed experimentally in diamond films. The model makes no claim as to the stability of the obtained faces, such as the occurrence of non-epitaxial crystallites or twinning. It is also possible to deduce transient behavior of the crystal morphology as growth time is increased. The model conclusions are presented in the form of a series of diagrams, which trace the existence (and dominance) boundaries of each face type, in presence of the others, and where each boundary crossing represent a topology change in terms of number of faces, edges and vertices. We validate the model by matching it against crystals published in the literature and illustrate its predictive value by suggesting ways to increase usable surface area of the diamond film.  相似文献   
7.
The synthesis of a block copolymer poly(vinyl chloride)‐b‐poly(n‐butyl acrylate)‐b‐poly(vinyl chloride) is reported. This new material was synthesized by single‐electron‐transfer/degenerative‐chain‐transfer‐mediated living radical polymerization (SET‐DTLRP) in two steps. First, a bifunctional macroinitiator of α,ω‐di(iodo)poly (butyl acrylate) [α,ω‐di(iodo)PBA] was synthesized by SET‐DTLRP in water at 25 °C. The macroinitiator was further reinitiated by SET‐DTLRP, leading to the formation of the desired product. This ABA block copolymer was synthesized with high initiator efficiency. The kinetics of the copolymerization reaction was studied for two PBA macroinitiators with number–average molecular weight of 10 k and 20 k. The relationship between the conversion and the number–average molecular weight was found to be linear. The dynamic mechanical thermal analysis suggests just one phase, indicating that copolymer behaves as a single material with no phase separation. This methodology provides the access to several block copolymers and other complex architectures that result from combinations of thermoplastics (PVC) and elastomers (PBA). From industrial standpoint, this process is attractive, because of easy experimental setup and the environmental friendly reaction medium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3001–3008, 2006  相似文献   
8.
Living radical polymerization of n‐butyl acrylate was achieved by single electron transfer/degenerative‐chain transfer mediated living radical polymerization in water catalyzed by sodium dithionate. The plots of number–average molecular weight versus conversion and ln[M]0/[M] versus time are linear, indicating a controlled polymerization. This methodology leads to the preparation of α,ω‐di(iodo) poly (butyl acrylate) (α,ω‐di(iodo)PBA) macroinitiators. The influence of polymerization degree ([monomer]/[initiator]), amount of catalyst, concentration of suspending agents and temperature were studied. The molecular weight distributions were determined using a combination of three detectors (TriSEC): right‐angle light scattering (RALLS), a differential viscometer (DV), and refractive index (RI). The methodology studied in this work represents a possible route to prepare well‐tailored macromolecules made of butyl acrylate in an environmental friendly reaction medium. Moreover, such materials can be subsequently functionalized leading to the formation of different block copolymers of composition ABA. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2809–2825, 2006  相似文献   
9.
A series of molecular dynamics simulations have been performed to study the supramolecular structure of self‐assembled complexes formed by N‐dodecyltrimethylammonium cations and the synthetic polypeptide poly(α,L ‐glutamate). The influence of the type of solvent has been investigated, considering explicit environments of chloroform, water, and methanol on a stoichiometric complex containing 15 residues. In chloroform, the complex stabilizes in a regular structure: the polypeptide adopts an α‐helix conformation that is regularly surrounded by surfactant molecules to form electrostatic interactions through a multiple interaction pattern. However, this structure destabilizes in methanol and water: (a) the α‐helix unfolds in the two solvents and (b) the electrostatic links between the surfactant molecules and the polyanion are disrupted in aqueous solution, although these interactions are still preserved in methanol. The role of the solvent environment in stabilizing or destabilizing the polypeptide secondary structure, the organization of the surfactant molecules, and predominantly the surfactant–polypeptide supramolecular organization is discussed in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1122–1133, 2006  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号