首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学   17篇
数学   2篇
物理学   5篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2007年   2篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1902年   2篇
  1878年   1篇
  1875年   1篇
  1872年   4篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
2.
A 6000-fold rate enhancement has been observed for the hydrolysis of bis(p-nitrophenyl)phosphate (BNPP) in the presence of 0.2 mM Cu(i-Pr(3)[9]aneN(3))(2+) at pH 9.2 and 50 degrees C. In a direct comparison, the rate of hydrolysis of BNPP is accelerated at least 60-fold over the previously reported catalyst Cu([9]aneN(3))(2+). As observed for Cu([9]aneN(3))(2+), hydrolysis is selective for diesters over monoesters. Hydrolysis of BNPP by Cu(i-Pr(3)[9]aneN(3))(2+) is catalytic, exhibiting both rate enhancement and turnover. The reaction is inhibited by both p-nitrophenyl phosphate and inorganic phosphate. The reaction is first-order in substrate and half-order in metal complex, with a k(1.5) of 0.060 +/- 0.004 M(-1/2) s(-1) at 50 degrees C. The temperature dependence of the rate constant results in a calculated activation enthalpy (Delta H(++) of 51 +/- 2 kJ mol(-1) and activation entropy (Delta S(++)) of -110 +/- 6 J mol(-1) K(-1). The kinetic pK(a) of 7.8 +/- 0.2 is close to the thermodynamic pK(a) of 7.9 +/- 0.2, consistent with deprotonation of a coordinated water molecule in the active form of the catalyst. The active catalyst [Cu(i-Pr(3)[9]aneN(3))(OH)(OH(2))](+) is in equilibrium with an inactive dimer, and the formation constant for this dimer is between 216 and 1394 M(-1) at pH 9.2 and 50 degrees C. Temperature dependence of the dimer formation constant K(f) indicates an endothermic enthalpy of formation for the dimer of 27 +/- 3 kJ mol(-1). The time course of anaerobic DNA cleavage by Cu(i-Pr(3)[9]aneN(3))(2+) is presented over a wide range of concentrations at pH 7.8 at 50 degrees C. The concentration dependence of DNA cleavage by Cu([9]aneN(3))(2+) and Cu(i-Pr(3)[9]aneN(3))(2+) reveals a maximum cleavage efficiency at sub-micromolar concentrations of cleavage agent. DNA cleavage by Cu(i-Pr(3)[9]aneN(3))(2+) is twice as efficient at pH 7.8 as at pH 7.2.  相似文献   
3.
4.
5.
Luminescent oligomers and polymers doped with silver(I) salts were used as optical sensors for ethylene and other gaseous small molecules. Films of poly(vinylphenylketone) (PVPK) or 1,4-bis(methylstyryl)benzene (BMSB) impregnated with AgBF(4), AgSbF(6), or AgB(C(6)F(5))(4) respond to ethylene exposures with a reversible emission quenching that is proportional to the pressure of the gas. Experiments with various analytes revealed that only gases capable of forming coordinate bonds with Ag(I) ions (i.e., ethylene, propylene, and ammonia) produced a sensing response. Comparison of the effects of ethylene and tetradeuterioethylene revealed that the emission quenching was due to enhanced vibrational relaxation. The Ag(I) ions are essential to the observed optical response. The oligomer/polymer support enhances the response characteristics of the impregnated salt by promoting separation of Ag(I) from its anion, a separation that improves accessibility of the Ag(I) ion to the gaseous analytes. Salts with large lattice energies, where the anion is not dissociated from Ag(I) in the matrix, fail to sensitize film responses. Photoluminescence experiments with Ag(I)-impregnated BMSB films established that the Ag(I) ions serve to communicate the analyte-binding signal to the support by altering the support-based emission. These experiments demonstrate a sensing paradigm where simultaneous coordination of Ag(I) ions to the support matrix and to a gaseous analyte enables the optical response.  相似文献   
6.
7.
Polubarinova-Kochina's analytical differential equation methodis used to determine the pseudo-steady-state solution to problemsinvolving the freezing (solidification) of wedges of liquidwhich are initially at their fusion temperature. In particular,we consider four distinct problems for wedges which are: freezingwith the same constant boundary temperature, freezing with thesame constant boundary heat fluxes, freezing with distinct constantboundary temperatures and freezing with distinct constant fluxesat the boundaries. For the last two problems, a Heun's differentialequation with an unknown singularity is derived, which in bothcases admits a particularly elegant simple solution for thespecial case when the wedge angle is . The moving boundariesobtained are shown pictorially.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号