首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   5篇
化学   35篇
数学   8篇
物理学   29篇
  2022年   1篇
  2020年   2篇
  2017年   3篇
  2016年   4篇
  2014年   4篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2001年   1篇
  2000年   3篇
  1996年   6篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
  1966年   2篇
  1965年   2篇
  1909年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The formation of excitons in OLEDs is spin dependent and can be controlled by electron‐paramagnetic resonance, affecting device resistance and electroluminescence yield. We explore electrically detected magnetic resonance in the regime of very low magnetic fields (<1 mT). A pronounced feature emerges at zero field in addition to the conventional spin‐ Zeeman resonance for which the Larmor frequency matches that of the incident radiation. By comparing a conventional π‐conjugated polymer as the active material to a perdeuterated analogue, we demonstrate the interplay between the zero‐field feature and local hyperfine fields. The zero‐field peak results from a quasistatic magnetic‐field effect of the RF radiation for periods comparable to the carrier‐pair lifetime. Zeeman resonances are resolved down to 3.2 MHz, approximately twice the Larmor frequency of an electron in Earth's field. However, since reducing hyperfine fields sharpens the Zeeman peak at the cost of an increased zero‐field peak, we suggest that this result may constitute a fundamental low‐field limit of magnetic resonance in carrier‐pair‐based systems. OLEDs offer an alternative solid‐state platform to investigate the radical‐pair mechanism of magnetic‐field effects in photochemical reactions, allowing models of biological magnetoreception to be tested by measuring spin decoherence directly in the time domain by pulsed experiments.  相似文献   
9.
For the last decade, a variant of pulsed laser ablation, Resonant-Infrared Matrix-Assisted Pulsed Laser Evaporation (RIR-MAPLE), has been studied as a deposition technique for organic and polymeric materials. RIR-MAPLE minimizes photochemical damage from direct interaction with the intense laser beam by encapsulating the polymer in a high infrared-absorption solvent matrix. This review critically examines the thermally-induced ablation mechanisms resulting from irradiation of cryogenic solvent matrices by a tunable free electron laser (FEL). A semi-empirical model is used to calculate temperatures as a function of time in the focal volume and determine heating rates for different resonant modes in two model solvents, based on the thermodynamics and kinetics of the phase transitions induced in the solvent matrices. Three principal ablation mechanisms are discussed, namely normal vaporization at the surface, normal boiling, and phase explosion. Normal vaporization is a highly inefficient polymer deposition mechanism as it relies on collective collisions with evaporating solvent molecules. Diffusion length calculations for heterogeneously nucleated vapor bubbles show that normal boiling is kinetically limited. During high-power pulsed-FEL irradiation, phase explosion is shown to be the most significant contribution to polymer deposition in RIR-MAPLE. Phase explosion occurs when the target is rapidly heated (108 to 1010 K/s) and the solvent matrix approaches its critical temperature. Spontaneous density stratification (spinodal decay) within the condensed metastable phase leads to rapid homogeneous nucleation of vapor bubbles. As these vapor bubbles interconnect, large pressures build up within the condensed phase, leading to target explosions and recoil-induced ejections of polymer to a near substrate. Phase explosion is a temperature (fluence) threshold-limited process, while surface evaporation can occur even at very low fluences.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号