首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   0篇
  国内免费   1篇
化学   34篇
数学   5篇
物理学   45篇
  2019年   3篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   4篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1927年   1篇
  1919年   1篇
  1913年   1篇
排序方式: 共有84条查询结果,搜索用时 109 毫秒
1.
2.
3.
Thyroxine methyl ester amides of mono-, di-, and tri-glycyl methacrylates have been prepared. Water-soluble polymers formed from thyroxine methacrylate monomers by free-radical copolymerization with acrylamide had molecular weights of (2–4) × 104 (by viscometry). A fluorescent polymer was prepared by copolymerization with a fluorescein methacrylate monomer. Similarly, a polymeric thyroxine material was prepared with amine functionality by copolymerization with N-3-aminopropylmethacrylamide. These polymers may have interesting biological and immunochemical properties.  相似文献   
4.
Several hydrophilic polymeric thiols were prepared from aminoactivated polymeric supports by reaction with N-acetylhomocysteinethiolactone. Supports include agaroses, cellulose, Glycophase™ controlled-pore glass, and Matrex™ acrylic beads. Thiol content in these polymers was 3–72 μmol SH/g dry polymer. Several were effective solid-phase activators of the sulfhydryl-dependent enzyme creatine phosphokinase at concentrations comparable to that of monomeric thiol required for enzyme activation. The kinetic activation curves for the polymeric and the monomeric (thioglucose) activators were similar, suggesting unhindered interaction of the enzyme with the polymeric activator.  相似文献   
5.
6.
An experimental study of the thermal decomposition of a β‐hydroxy alkene, 3‐methyl‐3‐buten‐1‐ol, in m‐xylene solution, has been carried out at five different temperatures in the range of 513.15–563.15 K. The temperature dependence of the rate constants for the decomposition of this compound in the corresponding Arrhenius equation is given by ln k (s?1) = (25.65 ± 1.52) ? (17,944 ± 814) (kJ·mol?1T?1. A computational study has been carried out at the M05–2X/6–31+G(d,p) level of theory to calculate the rate constants and the activation parameters by the classical transition state theory. There is a good agreement between the experimental and calculated rate constants and activation Gibbs energies. The bonding characteristics of reactant, transition state, and products have been investigated by the natural bond orbital analysis, which provides the natural atomic charges and the Wiberg bond indices. Based on the results obtained, the mechanism proposed is a one‐step process proceeding through a six‐membered cyclic transition state, being a concerted and slightly asynchronous process. The results have been compared with those obtained previously by us (Struct Chem 2013, 24, 1811–1816) for the thermal decomposition of 3‐buten‐1‐ol, in m‐xylene solution. We can conclude that in the compound studied in this work, 3‐methyl‐3‐buten‐1‐ol, the effect of substitution at position 3 by a weakly activating CH3 group is the stabilization of the transition state formed in the reaction and therefore a small increase in the rate of thermal decomposition.  相似文献   
7.
Abstract

Due to the wide use of polymers in medicine, researchers are required to solve a very important problem–to understand the interaction between materials of nonphysiological origin and the surrounding biological liquids, and tissues, particularly blood.  相似文献   
8.
9.
10.
Novel biomaterials are beneficial to the growing fields of drug delivery, cell biology, micro‐devices, and tissue engineering. With recent advances in chemistry and materials science, light is becoming an attractive option as a method to control biomaterial behavior and properties. In this Feature Article, we explore some of the early and recent advances in the design of light‐responsive biomaterials. Particular attention is paid to macromolecular assemblies for drug delivery, multi‐component surface patterning for advanced cell assays, and polymer networks that undergo chemical or shape changes upon light exposure. We conclude with some remarks about future directions of the field.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号