首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   1篇
化学   54篇
晶体学   1篇
力学   11篇
数学   11篇
物理学   28篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   10篇
  2012年   8篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
排序方式: 共有105条查询结果,搜索用时 343 毫秒
1.
Abstract— Laser flash photolysis of S-nitroso complexes of glutathione (GSNO) and bovine serum albumin (BSANO) via excitation at 355 nm has been used to investigate the photogeneration of nitric oxide (NO) and subsequent radical reactions. In the case of GSNO, liberation of NO was confirmed by its oxidation of oxyhemoglobin to met hemoglobin. Initial NO release is via homolytic cleavage of the S-N bond to produce the glutathione thiyl radical, GS, which can subsequently react with (a) ground-state GSNO (k= 1.7 × 109M?1/i> s?1) to yield additional NO and oxidized glutathione, GSSG; and (b) oxygen (k= 3.0 × 109M?1 s?1) to give the glutathione peroxy radical, GSOO, which subsequently reacts with ground-state GSNO (k= 3.8 × 108M?1 s?1), also producing additional NO and GSSG. The relative concentrations of oxygen and GSNO in the system determine the major pathway for removal of G'. These secondary reactions occur at such high rates that they preclude radical recombination under low-intensity irradiation conditions. The quantum yield of overall loss of GSNO thus varies with both GSNO and oxygen concentrations; a value of 0.66 was determined for an aerated solution of GSNO (0.86 mM). In the case of GSNO, therefore, generation of NO is not due solely to homolysis of the S-N bond; secondary reactions of the radicals formed lead to further NO liberation. In rationalizing the known phototoxicity of GSNO, possible contributions from thiyl and thiyl-derived radicals should be considered. In contrast to GSNO, direct excitation of BSANO (containing one bound NO group per molecule) led to photodecomposition with a quantum yield of 0.09 but no evidence was obtained for liberation of NO into the bulk medium.  相似文献   
2.
3.
Many polymeric membranes are produced by phase inversion technique invented by Loeb and Sourirajan in 1962. The dry-casting method is one of the major phase inversion techniques in which a homogeneous polymer solution consisting of solvent(s) and nonsolvent(s) is cast on a support and then evaporation of the casting solution takes place under convective conditions. In this paper, we model membrane formation by the dry-casting method. The model takes into account film shrinkage, evaporative cooling, coupled heat, and mass transfer and incorporates practical and reliable diffusion theory as well as complex boundary conditions especially at the polymer solution/air interface. The predictions from the model provide composition paths, temperature, and thickness of the solution. By plotting the composition paths on the ternary phase diagram, we ascertain the general structural characteristics of the membranes prepared from particular casting conditions. The predictive ability of the model was evaluated by comparing the results with the experimental data obtained from gravimetric measurements for cellulose acetate (CA)–acetone–water system. In an attempt to illustrate the importance of diffusion formalism on the predictions, recently proposed multicomponent diffusion theory and its simplified forms were utilized in the model. The computational results show that the critical factor for capturing the accurate behavior of membrane formation is the diffusion formalism utilized in the model.  相似文献   
4.
Polymers having oxide network chains are produced by hydrolytic polycondensation of metal alkoxides and alkoxysilanes. Molecular morphology and molecular size distribution of these inorganic polymers are strongly affected by certain nonchemical parameters. Included among these parameters is the molecular separation of interacting species during the polymerization. There is strong evidence that the molecular size expansion occurs by two distinct processes: initially by a gradual “growth” process, and later by “recombination” of high-molecular weight species. The later process often leads to a bi-modal molecular size distribution. The concentration of water-rich siloxane solutions leads to significant molecular size expansion by further oxide network formation. No similar polymer size growth occurs during the concentration of alcohol based solutions. This difference in the polymeric activities can be related to the difference in the terminal bond under the two different conditions.  相似文献   
5.
Journal of Radioanalytical and Nuclear Chemistry - In this study, natural (226Ra, 232Th, 40K) and artificial (137Cs) radionuclide activity concentration levels of 63 greenhouse soils collected from...  相似文献   
6.
Liquid–(solid + liquid) transitions are studied in (CH3)CCl3 + CCl4 by using the Landau phenomelogical model. The Gibbs energy is expanded in terms of the orientational disorder (OD) parameters for the transitions of the liquid–(rhombohedral + liquid) and liquid–(face-centered cubic + liquid) in a two component system of (CH3)CCl3 + CCl4. From the Gibbs energy, the phase line equations are derived for the transitions studied and they are fitted to the observed T–X phase diagram of (CH3)CCl3 + CCl4 for the concentration (X) CCl4. Temperature and concentration dependences of the OD parameters (Ψ and η) and the inverse susceptibility ($$\chi_{\psi }^{ - 1}$$ and $$\chi_{\eta }^{ - 1}$$) for the two transitions of interest, are predicted by using the melting curves of (CH3)CCl3 + CCl4 on the basis of the Landau phenomenological model. Our predictions, which can be compared with the experimental data, indicate that the first order transition of the liquid–(solid + liquid), in particular, for (CH3)CCl3 + CCl4 can be described satisfactorily by the Landau mean field model.  相似文献   
7.
A significant aspect of sol-gel technology is the capability it provides to affect the substructure of materials by controlling the nature and the kinetics of chemical reactions. This capability allows us to produce novel materials, design unique molecular and pore morphologies, circumvent high-temperature reactions, and modify material properties. The modifications include strongly thermodynamic-dependent high-temperature properties such as sintering, crystallization, and viscosity in glass and ceramic materials. A particularly exciting area for investigation is the optical-electronic field, where a significant dependence of electro-optical properties and photosensitivity on process-induced molecular-structural variations occurs. Understanding the basis for the creation of structural variations in sol-gel processes should have significant impact on the technologies and systems that use these materials. In this article, some fundamental aspects of alkoxide-based, sol-gel processes and thermochemical bases for process-induced structural variates are discussed.  相似文献   
8.
The transient sound radiation from the impact of a spherical object with a slab is analysed theoretically and compared with experimental results. It is shown that the major source of sound radiation when a sphere impinges on a massive plate is due to the sudden change of velocity of the sphere. By using the method of images, an analytical expression predicting the sound pressure waveform is obtained. Experimental results confirm the theoretical analysis and provide further explanation of this rigid body type of acoustic radiation.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号