首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   1篇
  国内免费   4篇
化学   50篇
晶体学   1篇
力学   7篇
数学   77篇
物理学   48篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2013年   5篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   9篇
  2006年   3篇
  2005年   8篇
  2004年   8篇
  2003年   4篇
  2002年   7篇
  2001年   5篇
  2000年   6篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   7篇
  1993年   3篇
  1992年   2篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   7篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1954年   1篇
  1939年   1篇
  1937年   1篇
  1933年   2篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
1.
2.
Band structure calculations at the level of LMTO-ASA provide insight into the electronic structure of BaV10O15 and the origin of the structural phase transition. A crystal orbital Hamiltonian population/integrated crystal orbital Hamiltonian population analysis provides evidence that the crystallographic phase transition is driven by V-V bond formation. As well, the energy bands near the Fermi level are very narrow, <1 eV, consistent with the fact that the observed insulating behavior can be due to electron localization via either Mott-Hubbard correlation and/or Anderson disorder. The partial solid solution, BaV10−xTixO15, was examined to study the effect of Ti-doping at the V sites on the structure and electronic transport properties. In spite of the non-existence of “BaTi10O15”, the limiting x=8, as indicated by a monotonic increase in the cell volume and systematic changes in properties. This limit may be due to the difficulty of stabilizing Ti2+ in this structure. For x=0.5 both the first order structural phase transition and the magnetic transition at 40 K are quenched. The samples obey the Curie-Weiss law to x=3 with nearly spin only effective moments along with θ values which range from −1090 K (x=0.5) to −1629 K (x=3). For x>3 a very large, ∼2×10−3 emu/mol, temperature independent (TIP) contribution dominates. Conductivity measurements on sintered, polycrystalline samples show semiconducting behavior for all compositions. Activation energies for Mott hopping derived from high temperature data range from ∼0.1 eV for x=0-1 and fall to a plateau of 0.06 eV for x=3-7. Low temperature data for x=3, 5 and 7 show evidence for Mott variable range hoping (VRH) with a T1/4 law and in one case between 5 and 17 K, a Efros-Shklovskii correlated hopping, T1/2 law, was seen, in sharp contrast to BaV10O15 where only the E-S law was observed up to 75 K. Seebeck coefficients are small (<35 μV/K), positive, roughly TIP and increase with increasing x up to x=5. This may point to a Heikes hopping of holes but a simple single carrier model is impossible. The compositions for x>3 are remarkable in that local moment behavior is lost, yet a metallic state is not reached. The failure of this system to be driven metallic even at such high doping levels is not fully understood but it seems clear that disorder induced carrier localization plays a major role.  相似文献   
3.
The excitation, fluorescence and phosphorescence characteristics of 29 compounds of psychopharmacological interest have been studied in ethanol at 77 k. Phosphorescence lifetimes are reported and the low-temperature luminescence spectra discussed. Luminescence characteristics of several important 1,4-benzodiazepines in acidic, basic and neutral solution are reported.  相似文献   
4.
The formation of Schiff bases from the reaction of primary amines and several aromatic aldehydes has been studied. In many cases the Schiff bases were too unstable or feebly-fluorescent to be of analytical value. 1-Pyrenealdehyde and 2-fluorenealdehyde, however, were found to be suitable fluorigenic reagents for primary aliphatic amines, forming Schiff bases that were very stable and intensely fluorescent in acidic ethanol. The derivatives of 1-pyrenealdehyde could be detected at concentrations less than 1 ng ml-1 in pure solution. Derivatives of 1-pyrenealdehyde could be readily produced by reactions at the surface of a t.l.c. plate. Combination of this approach with a simple deproteinizing procedure permitted analysis for nanograna quantities of primary amines in blood serum.  相似文献   
5.
The complex permitivity of the amorphous semiconductor Si12Ge10As30Te48 has been measured at frequencies from 1 to 4 GHz and at temperatures from 13 to 42°C. The results show that there is resonace absorption at the resonace frequency of 1.6 GHz corresponding to a relaxation time of 2.45 × 10?9 sec at 20°C, and that this resonance frequency increases with increasing temperature. On the basis of the model that the power loss is due to the transitions of dipoles between their equilibrium positions, the computed results are in good agreement with experimental ones. The size and the possible formation of such dipoles are also discussed.  相似文献   
6.
Electrochemical hydrogen generation is a rising prospect for future renewable energy storage and conversion. Platinum remains a leading choice of catalyst, but because of its high cost and low natural abundance, it is critical to optimize its use. In the present study, platinum oxide nanoparticles of approximately 2 nm in diameter are deposited on carbon nitride (C3N4) nanosheets by thermal refluxing of C3N4 and PtCl2 or PtCl4 in water. These nanoparticles exhibit apparent electrocatalytic activity toward the hydrogen evolution reaction (HER) in acid. Interestingly, the HER activity increases with increasing Pt4+ concentration in the nanoparticles, and the optimized catalyst even outperforms commercial Pt/C, exhibiting an overpotential of only −7.7 mV to reach the current density of 10 mA cm−2 and a Tafel slope of −26.3 mV dec−1. The results from this study suggest that the future design of platinum oxide catalysts should strive to maximize the Pt4+ sites and minimize the formation of the less active Pt2+ species.  相似文献   
7.
8.
Geometric aspects of degenerate modulation equations associated with spatially reversible systems are considered. Our primary observation is that stationary solutions of such equations always have a Poisson structure that is reminiscent of the equations governing the rigid body in mechanics. The Poisson structure is used to study the geometry of “spatial” phase space: A nontrivial Casimir of the Poisson structure provides a foliation of the phase space, spatially periodic states are given by critical points on level sets of the Casimir and stability type is given by the rate of change of the Casimir function. The bifurcation of spatially periodic states is then studied using singularity theory. The case where branches intersect transversely is treated in detail.  相似文献   
9.
Many aquatic species such as dolphins and whales have fins, which can be modeled as swept wings. Some of these fins, such as the dorsal fin of a dolphin, are semi-rigid and therefore can be modeled as a rigid swept wing with a compliant surface. An understanding of the hydrodynamics of the flow past swept compliant surfaces is of great interest for understanding potential drag reduction mechanisms, especially since swept wings are widely used in hydrodynamic and aerodynamic design. In this paper, the flow past a swept wing with a compliant surface is modeled by an attachment-line boundary layer flow, which is an exact similarity solution of the Navier–Stokes equations, flowing past a compliant surface modeled as an elastic plate. The hydrodynamic stability of the coupled problem is studied using a new numerical framework based on exterior algebra. The basic instability of the attachment line boundary layer on a rigid surface is a traveling wave instability that propagates along the attachment line, and numerical results show that the compliance results in a substantial reduction in the instability region. Moreover, the results show that, although the flow-field is three-dimensional, the qualitative nature of the instability suppression is very similar to the qualitative reduction of instability of the two-dimensional Tollmien–Schlichting modes in the classical boundary-layer flow past a compliant surface.  相似文献   
10.
Previous pulsed NMR studies of polyisoprene have largely been concerned with entangled or crosslinked networks. This paper deals with (i) the relaxation of high molecular weight entangled; (ii) cross-linked; (iii) monodisperse low molecular weight; and (iv) high molecular weight polymer in the presence of tetrachloroethylene which, by increasing molecular mobility, can be expected to influence the NMR relaxation. For all four types of polyisoprene, the spin-lattice T1, relaxation shows a minimum with position depending only on the free volume, as influenced by changes in temperature T and polymer concentration v1,. For monodisperse polyisoprene of molecular weight 7200, insufficient to form an entangled network, the spin-spin relaxation decay constant T2L is quantitatively related to the free volume 1 by two parameters A′ and B″ when the free volume is altered by a change in temperature, or in polymer concentration (10–100/). This can also be expressed in the form where the parameter T at 100% concentration agrees with the value used to describe rheological properties. At other concentrations of polymer, T and B′ can be derived quantitatively from the coefficients of volume expansion of polymer and solvent. The variation of T2L with molecular weight (T2L ∝ M?0.5) occurs via the A′ parameter. It is concluded that T2L can be quantitatively related to the free volume available for molecular motion (as influenced by temperature and solvent concentration) as well as to molecular weight. Furthermore T2L is simply related to viscosity n, over a wide range of temperatures and concentrations. T2 can be used to analyse the molecular motions involved in theology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号