首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2019年   1篇
  2012年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Hydrocarbon-soluble model systems for the calcium-amidoborane-ammine complex Ca(NH(2)BH(3))(2)?(NH(3))(2) were prepared and structurally characterized. The following complexes were obtained by the reaction of RNH(2)BH(3) (R = H, Me, iPr, DIPP; DIPP = 2,6-diisopropylphenyl) with Ca(DIPP-nacnac)(NH(2))?(NH(3))(2) (DIPP-nacnac = DIPP-NC(Me)CHC(Me)N-DIPP): Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))(2), Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))(3), Ca(DIPP-nacnac)[NH(Me)BH(3)]?(NH(3))(2), Ca(DIPP-nacnac)[NH(iPr)BH(3)]?(NH(3))(2), and Ca(DIPP-nacnac)[NH(DIPP)BH(3)]?NH(3). The crystal structure of Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3)(3) showed a NH(2)BH(3)(-) unit that was fully embedded in a network of BH???HN interactions (range: 1.97(4)-2.39(4)??) that were mainly found between NH(3) ligands and BH(3) groups. In addition, there were N-H???C interactions between NH(3) ligands and the central carbon atom in the ligand. Solutions of these calcium-amidoborane-ammine complexes in benzene were heated stepwise to 60?°C and thermally decomposed. The following main conclusions can be drawn: 1)?Competing protonation of the DIPP-nacnac anion by NH(3) was observed; 2)?The NH(3) ligands were bound loosely to the Ca(2+) ions and were partially eliminated upon heating. Crystal structures of [Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))](∞), Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))?(THF), and [Ca(DIPP-nacnac){NH(iPr)BH(3)}](2) were obtained. 3)?Independent of the nature of the substituent R in NH(R)BH(3), the formation of H(2) was observed at around 50?°C. 4)?In all cases, the complex [Ca(DIPP-nacnac)(NH(2))](2) was formed as a major product of thermal decomposition, and its dimeric nature was confirmed by single-crystal analysis. We proposed that thermal decomposition of calcium-amidoborane-ammine complexes goes through an intermediate calcium-hydride-ammine complex which eliminates hydrogen and [Ca(DIPP-nacnac)(NH(2))](2). It is likely that the formation of metal amides is also an important reaction pathway for the decomposition of metal-amidoborane-ammine complexes in the solid state.  相似文献   
2.
Hydrocarbon‐soluble model systems for the calcium–amidoborane–ammine complex Ca(NH2BH3)2 ? (NH3)2 were prepared and structurally characterized. The following complexes were obtained by the reaction of RNH2BH3 (R=H, Me, iPr, DIPP; DIPP=2,6‐diisopropylphenyl) with Ca(DIPP‐nacnac)(NH2) ? (NH3)2 (DIPP‐nacnac=DIPP? NC(Me)CHC(Me)N? DIPP): Ca(DIPP‐nacnac)(NH2BH3) ? (NH3)2, Ca(DIPP‐nacnac)(NH2BH3) ? (NH3)3, Ca(DIPP‐nacnac)[NH(Me)BH3] ? (NH3)2, Ca(DIPP‐nacnac)[NH(iPr)BH3] ? (NH3)2, and Ca(DIPP‐nacnac)[NH(DIPP)BH3] ? NH3. The crystal structure of Ca(DIPP‐nacnac)(NH2BH3) ? (NH3)3 showed a NH2BH3? unit that was fully embedded in a network of BH???HN interactions (range: 1.97(4)–2.39(4) Å) that were mainly found between NH3 ligands and BH3 groups. In addition, there were N? H???C interactions between NH3 ligands and the central carbon atom in the ligand. Solutions of these calcium–amidoborane–ammine complexes in benzene were heated stepwise to 60 °C and thermally decomposed. The following main conclusions can be drawn: 1) Competing protonation of the DIPP‐nacnac anion by NH3 was observed; 2) The NH3 ligands were bound loosely to the Ca2+ ions and were partially eliminated upon heating. Crystal structures of [Ca(DIPP‐nacnac)(NH2BH3) ? (NH3)], Ca(DIPP‐nacnac)(NH2BH3) ? (NH3) ? (THF), and [Ca(DIPP‐nacnac){NH(iPr)BH3}]2 were obtained. 3) Independent of the nature of the substituent R in NH(R)BH3, the formation of H2 was observed at around 50 °C. 4) In all cases, the complex [Ca(DIPP‐nacnac)(NH2)]2 was formed as a major product of thermal decomposition, and its dimeric nature was confirmed by single‐crystal analysis. We proposed that thermal decomposition of calcium–amidoborane–ammine complexes goes through an intermediate calcium–hydride–ammine complex which eliminates hydrogen and [Ca(DIPP‐nacnac)(NH2)]2. It is likely that the formation of metal amides is also an important reaction pathway for the decomposition of metal–amidoborane–ammine complexes in the solid state.  相似文献   
3.
Plasma Chemistry and Plasma Processing - Synthesis process of graphene nano-flakes produced in radio-frequency inductively coupled plasma system by axially injecting CH4 into Ar–H2 plasma is...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号