首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
化学   67篇
  2021年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1993年   3篇
  1991年   1篇
  1990年   3篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
排序方式: 共有67条查询结果,搜索用时 922 毫秒
1.
2.
3.
Structural volume changes upon excitation of isomerization-blocked 5,12-trans-locked bacteriorhodopsin (bR) (bacterio-opsin + 5-12-trans-locked retinal) were studied using photothermal methods. The very small prompt expansion detected using laser-induced optoacoustics (0.3 mL/mol of absorbed photons) is assigned to a charge reorganization in the chromophore protein pocket concomitant with the formation of the intermediate T5.12. The subsequent contraction associated with a 300 ns lifetime is assigned to protein movements required to reach the entire chromoprotein free energy minimum, after the 17 ps optical decay of T5.12. The volume changes comprise the entropy of medium rearrangement during T5.12 formation and decay. The slow changes detected in previous studies by atomic force microscopy might be explained by the slowing down of movements in films containing 5,12-trans-locked bR. Photothermal beam deflection data with the 5,12-trans-locked bR suspensions indicate no further changes in microseconds to hundreds of milliseconds. Thus, all the absorbed energy is either released to the solution as heat or used for entropy changes within the first 300 ns after the pulse, supporting the paradigm that isomerization is required for signal transduction in retinal proteins. Bacterio-opsin assembled with all-trans-retinal afforded (similar to data reported with wild-type bR) an expansion of 2.6 mL/mol (assigned to the production of KE) followed by a further expansion of 0.8 mL/mol (KE-->KL; KE, KL, early and late K's) involving no heat loss. For KL decay to L, a contraction of 6 mL/mol of phototransformed reconstituted all-trans bR was determined.  相似文献   
4.
Freshly prepared solutions of biliverdin dimethyl ester ( 2 ) in ethanol showed fluorescence maxima at 710 and 770 nm [ΦF = 1.1. 10?4 (room temperature) and 5.0 10?4 (77 K)]. The maxima of monoprotonated 2 at 77 K were shifted to 725 and 806 nm and the quantum yield was increased to 2.6. 10?2. This acid effect was reversible by neutralization with base. When a neutral solution was kept standing in the dark at room temperature, or when an acidic solution was neutralized by base, an additional fluorescence maximum at 500 nm with a mirror image excitation spectrum with λmax = 470 nm developed, which disappeared on addition of acid and which is attributed to a chemical change of 2 .  相似文献   
5.
Abstract–Thc kinetics of the microsecond phototransformation intermediates of 124 kDa Avena phytochrome (17001,2) were studied in the prcsence of bound monoclonal antibodies at various temperatures. A global analysis was applied to the decays at all wavelengths at each temperature in order to derive the rate constants and the decay-associated spectra of the three decay components. Monoclonal antibodies bound to specific epitopes altered the Arrhenius parameters of both 17001,2 decay components. The strongest influence on these parameters was observed with OAT 8 (epitope between residues 624 and 686), which decreased by more than 50% the activation parameters of both components. This decrease is interpreted to result from an increased flexibility induced by this antibody in the ground state or in the transition state of bonds changing during the decay of both 1700 transients. Thus, the OAT 8 cpitope appears to be functionally important during the decay of the 17001,2 intermediates. For the case of 11001 bound OAT 23 and OAT 25 (epitopes between residues 1 and 66) reduced even further the relatively small flexibility of these bonds in the red light-absorbing form of phytochrome (P1) without antibodies, as reflected by the high preex-ponential factors for its decay. This resulted also in higher activation energies for this decay in the presence of the antibodies. Thus, the amino-terminus should act as a rigid spacer of the chromophore cavity without affecting it during the microsecond transformation, because the Arrhenius parameters for these decays are similar to those for small phytochrome. The possible implications of the influence of the various antibodies on the bleaching remaining after the decay of 17001,2 are discussed.  相似文献   
6.
The full-length apoprotein (124 kDa) and the chromophore-binding N-terminal half (66 kDa) of the phytochrome of the unicellular green alga Mougeotia scalaris have been heterologously expressed in the methylotrophic yeast Pichia pastoris. Assembly with the tetrapyrrole phycocyanobilin (PCB) yielded absorption maxima (for the full-length protein) at 646 and 720 nm for red- and far-red absorbing forms of phytochrome (Pr and Pfr), respectively, whereas the maxima of the N-terminal 66 kDa domain are slightly blueshifted (639 and 714 nm, Pr and Pfr, respectively). Comparison with an action spectrum reported earlier gives evidence that in Mougeotia, as formerly reported for the green alga Mesotaenium caldariorum, PCB constitutes the genuine chromophore. The full-length protein, when converted into its Pfr form and kept in the dark, reverted rapidly into the Pr form (lifetimes of 1 and 24 min, ambient temperature), whereas the truncated chromopeptide (66 kDa construct) was more stable and converted into Pr with time constants of 18 and 250 min. Also, time-resolved analysis of the light-induced Pfr formation revealed clear differences between both recombinant chromoproteins in the various steps involved. The full-length phytochrome showed slower kinetics in the long milliseconds-to-seconds time domain (with dominant Pfr formation processes of ca 130 and 800 ms), whereas for the truncated phytochrome the major component of Pfr formation had a lifetime of 32 ms.  相似文献   
7.
Photophysical studies with semi-rigid, 1, and flexible, 2, donor-bridge-acceptor (D-b-A2+) molecules with D a porphyrin and A2+ a methyl viologen moiety, were performed in neat polar solvents as well as included in surfactant (DTAB) aqueous and in reverse AOT/n-alkane micelles. The micelles acted as nanoreactors for the photoinduced electron transfer reaction upon laser excitation. In spite of the longer lifetime of the charge separated (CS) state in the semi-rigid tetrad 1(ca. 200 ns vs. ca. 100 ns for the flexible dyad 2), the CS formation quantum yield, for example in acetonitrile, was lower for the former (phi(CS) = 0.13) than for the latter (0.58). Comparison of the time-resolved fluorescence data in neat solvent and in the micelles yielded the phi(CS) values in the dilute micellar solutions. Application of laser-induced optoacoustic spectroscopy at various temperatures to 1 dissolved in a polar organic solvent (benzonitrile, BZN) included in aqueous DTAB nanoreactors afforded structural volume changes for the production in hundreds of ps of the CS state upon excitation of a polar molecule. The contraction during CS formation upon excitation of the collapsed conformer in BZN is attributed to the entering of solvent into the open molecular cavity. The opening upon formation of the CS state due to photoinduced electron transfer in the 1 collapsed conformation arises from the repulsion of the two positively charged ends in this state, as previously calculated. Inclusion of 1 in reverse AOT micelles in various n-alkanes also led to a contraction upon excitation, but the data had much more error due to the limited range of variability of the ratio of thermoelastic parameters. The data obtained with the more flexible "supermolecule" 2 showed the predicted large conformation flexibility of these molecules.  相似文献   
8.
Abstract— A fluorescence quantum yield (emission at650–850 nm) of π= (2.3 ± 0.3)10−3 was measured for the red-absorbing form (Pr) of 124-kDa phytochrome from etiolated oat seedlings ( Avena sativa ) upon excitation in the Soret band at Λexc= 380 nm. The small difference between this value and the previously determined quantum yield with Λexc= 640 nm, π= (3.5 ± 0.4)10−3is attributed to a blue-absorbing emitter responsible for the "anomalous" or "blue" emission of the chromoprotein in the region from ca. 400 to 550 nm. The absorption of Pr at 380 nm is consequently somewhat lower than that measured directly from the spectrum. Processes from upper excited states of the Pr phytochromobilin-derived chromophore other than rapid relaxation to the emitting state are not important. A quantum yield of Φ ' 1.2 times 10−3 is estimated for the blue fluorescence. The proportion of the blue emitters relative to Pr appears to be relatively high.  相似文献   
9.
As part of a continuing investigation of the topological control of intramolecular electron transfer (ET) in donor-acceptor systems, a symmetrical parachute-shaped octaethylporphyrin-fullerene dyad has been synthesized. A symmetrical strap, attached to ortho positions of phenyl groups at opposing meso positions of the porphyrin, was linked to [60]-fullerene in the final step of the synthesis. The dyad structures were confirmed by (1)H, (13)C, and (3)He NMR, and MALDI-TOF mass spectra. The free-base and Zn-containing dyads were subjected to extensive spectroscopic, electrochemical and photophysical studies. UV-vis spectra of the dyads are superimposable on the sum of the spectra of appropriate model systems, indicating that there is no significant ground-state electronic interaction between the component chromophores. Molecular modeling studies reveal that the lowest energy conformation of the dyad is not the C(2)(v)() symmetrical structure, but rather one in which the porphyrin moves over to the side of the fullerene sphere, bringing the two pi-systems into close proximity, which enhances van der Waals attractive forces. To account for the NMR data, it is proposed that the dyad is conformationally mobile at room temperature, with the porphyrin swinging back and forth from one side of the fullerene to the other. The extensive fluorescence quenching in both the free base and Zn dyads is associated with an extremely rapid photoinduced electron-transfer process, k(ET) approximately 10(11) s(-)(1), generating porphyrin radical cations and C(60) radical anions, detected by transient absorption spectroscopy. Back electron transfer (BET) is slower than charge separation by up to 2 orders of magnitude in these systems. The BET rate is slower in nonpolar than in polar solvents, indicating that BET occurs in the Marcus inverted region, where the rate decreases as the thermodynamic driving force for BET increases. Transient absorption and singlet molecular oxygen sensitization data show that fullerene triplets are formed only with the free base dyad in toluene, where triplet formation from the charge-separated state is competitive with decay to the ground state. The photophysical properties of the P-C(60) dyads with parachute topology are very similar to those of structurally related rigid pi-stacked P-C(60) dyads, with the exception that there is no detectable charge-transfer absorption in the parachute systems, attributed to their conformational flexibility. It is concluded that charge separation in these hybrid systems occurs through space in unsymmetrical conformations, where the center-to-center distance between the component pi-systems is minimized. Analysis of the BET data using Marcus theory gives reorganization energies for these systems between 0.6 and 0.8 eV and electronic coupling matrix elements between 4.8 and 5.6 cm(-)(1).  相似文献   
10.
The mechanism of I700 decay, representing an early event in the phytochrome Pr→ Pfr phototransformation, was reanalyzed in the microsecond range by conventional laser flash photolysis as well as by two-laser/two-color flash photolysis. Three kinetic models that might describe the I700 decay mechanism following Pr excitation were considered: a parallel, a sequential, and an equilibrium model. These models were used to mathematically simulate both the one- and two-laser flash experiments in an effort to select the model best describing the I700 decay. The sequential model could be excluded already on the basis of the one-laser flash photolysis results alone. Discussion of the two-laser/two-color flash rcsults in the context of the equilibrium and the parallel models is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号