首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2021年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.

Development of low-emission or zero-emission power generation systems is one of the most important subjects humanity is dealing with. Among different under development technologies and energy systems, a solid oxide fuel cell (SOFC) is an efficient and low-emission energy conversion device that is passing its research and development career. The current study aims to investigate a hydrocarbon fueled anode-supported planar-type SOFC due to simpler geometry, higher power density, and low overpotentials. In this study, electric performance of a SOFC with different interconnect designs under different operating conditions, such as operating voltage, channel inlet temperature, pre-reforming rate of methane, and inlet fuel and air velocity, has been investigated by use of a three-dimensional model considering complicated systems of equations: species mass conservation, first law of thermodynamics, conservation of momentum, and non-linear electrochemical models including multi-specious diffusion. It has been concluded that at a given voltage, inlet temperature, inlet air and fuel velocity, and pre-reforming rate, wider gas channels help to more uniform distribution and better penetration of reactant gases. Therefore, considering low-concentration polarization as an object, narrow ribs are preferred over wide ribs. By increasing the rate of the electrochemical reaction, the current and power density and subsequently the temperature difference increase but the fuel consumption in all cases has almost a decreasing trend. Also, it has been found that increasing inlet air velocity has little effect on current and power density but because of more cooling effect, it reduces the temperature difference and fuel consumption coefficient. On the other hand, increasing the inlet temperature has no meaningful effect on the temperature difference along the channels.

  相似文献   
2.
Analytical solution of the Dirac equation for the modified Pöschl–Teller potential and trigonometric Scarf II non-central potential for spin symmetry is studied using asymptotic iteration method. One-dimensional Dirac equation consisting of the radial and angular parts can be obtained by the separation of variables. By using asymptotic iteration method, the relativistic energy equation and orbital quantum number (l) equation can be obtained, where both are interrelated. Relativistic energy equation is calculated numerically by the Matlab software. The increase in the radial quantum number n r causes a decrease in the energy value, and the wave functions of the radial and the angular parts are expressed in terms of hypergeometric functions. Some thermodynamical properties of the system can be determined by reducing the relativistic energy equation to the non-relativistic energy equation. Thermodynamical properties such as vibrational partition function, vibrational specific heat function and vibrational mean energy function are expressed in terms of error function.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号