首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   11篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Detailed studies of properties of new 3-substituted 5-anilino-1,2,4-thiadiazoles containing different substituents at position 3 of the thiadiazole ring were carried out, in particular, their esterase profile and antioxidant properties. It was found that the presence in the molecule of 2-aminopropyl fragment determines an efficient and selective inhibition of butyrylcholinesterase as compared to acetylcholinesterase and carboxylesterase, with radical-scavenging activity being weak. The compounds containing a 2-aminopropenyl fragment possess a high radicalscavenging activity, weakly inhibit cholinesterases, and exhibit anticarboxylesterase activity. A wide spectrum of activity of 3-substituted 5-anilino-1,2,4-thiadiazoles as inhibitors of cholinesterases and highly efficient scavengers of free radicals gives a basis for the optimization of structure and development in this series of original agents for therapy of neurodegenerative diseases.  相似文献   
2.
Russian Chemical Bulletin - A number of N-(4-tert-butylbenzyl)-N-(pyridin-3-ylmethyl)-2-aminothiazolines with different substituents at position 5 of thiazoline ring was synthesized and their...  相似文献   
3.
Russian Chemical Bulletin - A comparative analysis of the esterase profile and antiradical activity of two groups of hybrid compounds, viz., tetrahydro-γ-carboline conjugates with carbazoles...  相似文献   
4.
Selective carboxylesterase inhibitors are employed as modulators of hydrolytic metabolism of ester or amide-containing drugs. Using the Molecular Field Topology Analysis (MFTA), the models for the relationships between the structures and inhibitory activities of 5-halomethyl-2-aminothiazolines against acetylcholinesterase, butyrylcholinesterase, and carboxylesterase were built, the molecular design was performed, and a focused library of potentially active and selective carboxylesterase inhibitors was proposed.  相似文献   
5.
Russian Chemical Bulletin - Literature data and authors’ own results on the role of serine hydrolases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), as drug targets for...  相似文献   
6.
Russian Chemical Bulletin - We improved the synthetic procedure for 3-(2-arylhydrazono)-1,1,1-trifluro-3-(phenylsulfonyl)propan-2-ones and established their structure. The study of their esterase...  相似文献   
7.
New N-(pyridin-3-ylmethyl)-2-aminothiazolines containing various substituents at the 5 position of the thiazoline ring and the 4-tert-butylbenzyl, 4-isopropylbenzyl, or 4-fluorobenzyl moiety at the nitrogen atom of the amino group were synthesized. The inhibitory activity of the synthesized compounds against human erythrocyte acetylcholinesterase (AChE, EC 3.1.1.7), equine serum butyrylcholinesterase (BChE, EC 3.1.1.8), and porcine liver carboxylesterase (CaE, EC 3.1.1.1) was evaluated and their antioxidant properties were studied by ABTS assay. N-(Pyridin-3-ylmethyl)-2-aminothiazolines proveded to be very weak AChE inhibitors, while their inhibitory activity against BChE and CaE was structure-dependent. 2-Aminothiazolines containing the 4-tert-butylbenzyl moiety are more efficient BChE inhibitors compared to the derivatives containing the 4-isopropylbenzyl or 4-fluorobenzyl substituent. An analysis of the dependence of the esterase profile of N-(pyridin-3-ylmethyl)-2-aminothiazolines on the structure of the substituent at the 5 position of the thiazoline ring of these compounds demonstrated that the derivatives containing the iodomethyl substituent possess the highest anti-BChE activity, the compounds with R2 = H and R3 = CH2I have the optimal esterase profile. Regardless of the structure of the substituents in the benzyl moiety, all N-(pyridin-3-ylmethyl)-2-aminothiazolines containing the iodomethyl substituent at the 5 position of the thiazoline ring exhibited high radical scavenging activity comparable with that of the standard antioxidant Trolox. N-(Pyridin-3-ylmethyl)-2-aminothiazolines were shown to be a new promising class of compounds for the design of multifunctional agents for the treatment of neurodegenerative diseases.  相似文献   
8.
Russian Chemical Bulletin - Hybrid γ-carboline-based compounds containing a nitrooxy group as an NO-donor were prepared. It was shown that the introduction of this group did not affect the...  相似文献   
9.
New hybrids of 4-amino-2,3-polymethylenequinoline with different sizes of the aliphatic ring linked to butylated hydroxytoluene (BHT) by enaminoalkyl (7) or aminoalkyl (8) spacers were synthesized as potential multifunctional agents for Alzheimer’s disease (AD) treatment. All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. Lead compound 8c, 2,6-di-tert-butyl-4-{[2-(7,8,9,10- tetrahydro-6H-cyclohepta[b]quinolin-11-ylamino)-ethylimino]-methyl}-phenol exhibited an IC50(AChE) = 1.90 ± 0.16 µM, IC50(BChE) = 0.084 ± 0.008 µM, and 13.6 ± 1.2% propidium displacement at 20 μM. Compounds possessed low activity against carboxylesterase, indicating likely absence of clinically unwanted drug-drug interactions. Kinetics were consistent with mixed-type reversible inhibition of both cholinesterases. Docking indicated binding to catalytic and peripheral AChE sites; peripheral site binding along with propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. Compounds demonstrated high antioxidant activity in ABTS and FRAP assays as well as inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Conjugates 8 with amine-containing spacers were better antioxidants than those with enamine spacers 7. Computational ADMET profiles for all compounds predicted good blood-brain barrier distribution (permeability), good intestinal absorption, and medium cardiac toxicity risk. Overall, based on their favorable pharmacological and ADMET profiles, conjugates 8 appear promising as candidates for AD therapeutics.  相似文献   
10.
Using two ways of functionalizing amiridine—acylation with chloroacetic acid chloride and reaction with thiophosgene—we have synthesized new homobivalent bis-amiridines joined by two different spacers—bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) —as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug–drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a–c exhibited an IC50(AChE) = 2.9–1.4 µM, IC50(BChE) = 0.13–0.067 µM, and 14–18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5c–e (m = 4, 5, 6) showed mild (13–17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2–2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood–brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c–e appear promising for future optimization and development as multitarget anti-AD agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号