首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   5篇
数学   1篇
  2022年   1篇
  2017年   1篇
  2013年   1篇
  2012年   2篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 125 毫秒
1
1.
Journal of Thermal Analysis and Calorimetry - Two samples (“O” and “C”) of aluminium-based powders were calorimetrically investigated with respect to the self-heating risk...  相似文献   
2.

Two natural coals and a sample of activated carbon were studied with respect to micropores accessibility for C1–C4 alkanols using immersion calorimetry. From the immersion enthalpies, micropores volumes were calculated according to the Stoeckli–Kraehenbuehl (SK) equation, and obtained values were compared with the surface characteristics of gas adsorption measurements. Validity of the SK equation was found to be problematic for natural coals giving micropores volumes up to three times exceeding those of the CO2 adsorption measurements. Reason for such discrepancy is discussed, with specific interactions between coals and alkanols likewise marked swelling of coals in the presence of alkanols being recognised as possible explanation. A drop in immersion heats with branched butanols was generally observed, enabling at least semi-quantitative evaluation of the abundance of micropores with diameters below ca. 0.7 nm that are inaccessible for tert-butanol.

  相似文献   
3.
Simple adaptation of the technique of immersion calorimetry enables determining both integral and differential adsorption heats as well as the course of the adsorption isotherm of phenol on activated carbon. The innovative aspect of the applied procedure consists in bringing the phenol aqueous solution to contact with the suspension of carbon with water. Thus, the “interfering” heat effect of carbon interaction with water is eliminated, and only the net adsorption heat of phenol is monitored. The value of −52.5 kJ mol−1 was ascertained as the molar differential adsorption heat at the low surface coverage (cca 0.2 mmol g−1) of the sample of microporous carbon. As the adsorption process continues, for adsorption uptakes exceeding the value of about 1 mmol g−1, molar differential adsorption heats appear to be established at a level of about −20 + 5 kJ mol−1.  相似文献   
4.
5.
The immobilisation of lead(II) ions from aqueous solutions on natural coal was investigated to compare calculated and measured adsorption enthalpies. For this purpose, adsorption isotherms were measured at temperatures of 303, 333 and 353 K. Adsorption enthalpy ΔH was evaluated from temperature dependence of the equilibrium constant of adsorption using the van‘t Hoff equation. Thus, the value of ΔH = 27 kJ mol?1 was obtained manifesting endothermic effect of lead(II) immobilisation on the coal. However, based on the flow and immersion calorimetric measurements, the exothermic character of lead(II) adsorption on the studied coal was proven with a value of about ?7 kJ mol?1.  相似文献   
6.
Thermal analysis was used to study the influence of CaCl2 and urea as possible chemical additives inhibiting coal oxidation process at temperatures 100?C300?°C. Weight increase due to oxygen chemisorption and corresponding amount of evolved heat were evaluated as main indicative parameters. TA experiments with different heating rates enabled determination of effective activation energy E a as a dependence of conversion. In the studied range of temperatures, the interaction of oxygen with (untreated) coal was confirmed rather as a complex process giving effective activation energies changing continuously from 70?kJ?mol?1 (at about 100?°C) to ca. 180?kJ?mol?1 at temperatures about 250?°C. The similar trend in E a was found when chemical agents were added to the coal. However, while the presence of CaCl2 leads to higher values of the effective activation energies during the whole temperature range, urea causes increase in E a only at temperatures below 200?°C. Exceeding the temperature 200?°C, the presence of urea in the coal induces decrease in activation energy of the oxidation process indicating rather catalysing than inhibiting action on coal oxidation. Thus, CaCl2 can only be recommended as a ??real?? inhibitor affecting interaction of coal with oxygen at temperatures up to 300?°C.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号