首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   3篇
化学   36篇
力学   1篇
数学   1篇
物理学   2篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  1998年   1篇
排序方式: 共有40条查询结果,搜索用时 156 毫秒
1.
2.
3.
Energy selected trimethyl phosphine ions were prepared by threshold photoelectron photoion coincidence (TPEPICO) spectroscopy. This ion dissociates via H, CH(3), and CH(4) loss, the latter two involving hydrogen transfer steps. The ion time-of-flight distribution and the breakdown diagram are analyzed in terms of the statistical RRKM theory, which includes tunneling. Ab initio and DFT calculations provide the vibrational frequencies required for the RRKM modeling. CH(3) loss could produce both the P(CH(3))(2)(+) by a simple bond dissociation step, and the more stable HP(CH(2))CH(3)(+) ion by a hydrogen transfer step. Quantum chemical calculations are extensively used to uncover the reaction scheme, and they strongly suggest that the latter product is exclusively formed via an isomerization step in the energy range of the experiment. The data analysis, which includes modeling with the trimethyl phosphine thermal energy distribution, provides accurate onset energies for both H (E(0K) = 1024.1 +/- 3.5 kJ/mol) and CH(3) (E(0K) = 1024.8 +/- 3.5 kJ/mol) loss reactions. From this analysis, we conclude that the Delta(f)H(298K) degrees [HP(CH(2))(CH(3))(+)] = 783 +/- 8 kJ/mol and Delta(f)H(298K) degrees [P(CH(2))(CH(3))(2)(+)] = 711 +/- 8 kJ/mol.  相似文献   
4.
5.

A comprehensive survey of matrix effects on the LC–MS/MS analysis of the banned antibiotic growth promoters carbadox and olaquindox in feed was carried out. Various factors of sample preparation procedure and measurement were systematically investigated by pre- and post-extraction addition and postcolumn infusion experiments. In general, strong signal suppression up to 70 % for carbadox and up to 90 % for olaquindox was observed when using different extraction solvents and techniques as well as different chromatographic conditions. Reduction of matrix effects was achieved by SPE clean-up and dilution of sample extracts. Nevertheless, matrix effect profiles determined by postcolumn infusion revealed, that reduction of signal suppression at a respective retention time cannot guarantee improvement of the methods performance. If high variability of matrix effects is present along the chromatographic run, accuracy might decrease despite reduced signal suppression. Besides method parameters, different feedingstuffs were investigated and showed similar matrix effects.

  相似文献   
6.
The photoionization and dissociative photoionization of 1,4‐di‐tert‐butyl‐1,4‐azaborinine by means of synchrotron radiation and threshold photoelectron photoion coincidence spectroscopy is reported. The ionization energy of the compound was determined to be 7.89 eV. Several low‐lying electronically excited states in the cation were identified. The various pathways for dissociative photoionization were modeled by statistical theory, and appearance energies AE0K were obtained. The loss of isobutene in a retro‐hydroboration reaction is the dominant pathway, which proceeds with a reverse barrier. Pyrolysis of the parent compound in a chemical reactor leads to the generation of several yet unobserved boron compounds. The ionization energies of the C4H6BN isomers 1,2‐ and 1,4‐dihydro‐1,4‐azaborinine and the C3H6BN isomer 1,2‐dihydro‐1,3‐azaborole were determined from threshold photoelectron spectra.  相似文献   
7.
8.
Internal energy selected bromofluoromethane cations were prepared and their internal energy dependent fragmentation pathways were recorded by imaging photoelectron photoion coincidence spectroscopy (iPEPICO). The first dissociation reaction is bromine atom loss, which is followed by fluorine atom loss in CF(3)Br and CF(2)Br(2) at higher energies. Accurate 0 K appearance energies have been obtained for these processes, which are complemented by ab initio isodesmic reaction energy calculations. A thermochemical network is set up to obtain updated heats of formation of the samples and their dissociative photoionization products. Several computational methods have been benchmarked against the well-known interhalogen heats of formation. As a corollary, we stumbled upon an assignment issue for the ClF heat of formation leading to a 5.7 kJ mol(-1) error, resolved some time ago, but still lacking closure because of outdated compilations. Our CF(3)(+) appearance energy from CF(3)Br confirms the measurements of Asher and Ruscic (J. Chem. Phys. 1997, 106, 210) and Garcia et al. (J. Phys. Chem. A 2001, 105, 8296) as opposed to the most recent result of Clay et al. (J. Phys. Chem. A 2005, 109, 1541). The ionization energy of CF(3) is determined to be 9.02-9.08 eV on the basis of a previous CF(3)-Br neutral bond energy and the CF(3) heat of formation, respectively. We also show that the breakdown diagram of CFBr(3)(+), a weakly bound parent ion, can be used to obtain the accurate adiabatic ionization energy of the neutral of 10.625 ± 0.010 eV. The updated 298 K enthalpies of formation Δ(f)H(o)(g) for CF(3)Br, CF(2)Br(2), CFBr(3), and CBr(4) are reported to be -647.0 ± 3.5, -361.0 ± 7.4, -111.6 ± 7.7, and 113.7 ± 4 kJ mol(-1), respectively.  相似文献   
9.
The dissociative photoionization of 1,1-C(2)H(2)Cl(2), (E)-1,2-C(2)H(2)Cl(2), and (Z)-1,2-C(2)H(2)Cl(2) has been investigated at high energy and mass resolution using the imaging photoelectron photoion coincidence instrument at the Swiss Light Source. The asymmetric Cl-atom loss ion time-of-flight distributions were fitted to obtain the dissociation rates in the 10(3) s(-1) < k < 10(7) s(-1) range as a function of the ion internal energy. The results, supported by ab initio calculations, show that all three ions dissociate to the same C(2v) symmetry ClC═CH(2)(+) product ion. The 0 K onset energies thus establish the relative heats of formation of the neutral isomers, that is, the isomerization energies. The experimental rate constants, k(E), as well as ab initio calculations indicate an early isomerization transition state and no overall reverse barrier to dissociation. The major high energy channels are the parallel HCl loss and the sequential ClC═CH(2)(+) → HCCH(+) + Cl process, the latter in competition with a ClC═CH(2)(+) → ClCCH(+) + H reaction. A parallel C(2)H(2)Cl(2)(+) → C(2)HCl(2)(+) + H channel also weakly asserts itself. The 0 K onset energy for the sequential Cl loss reaction suggests no barrier to the production of the most stable acetylene ion product; thus the sequential Cl-atom loss is preceded by a ClC═CH(2)(+) → HC(Cl)CH(+) reorganization step with a barrier lower than that of the second Cl-atom loss. The breakdown diagram corresponding to this sequential dissociation reveals the internal energy distribution of the first C(2)H(2)Cl(+) daughter ion, which is determined by the kinetic energy release in the first, Cl loss reaction at high excess energies. At low kinetic energy release, this distribution corresponds to the predicted two translational degrees of freedom, whereas at higher energies, the excess energy partitioning is characteristic of only one translational degree of freedom. New Δ(f)H(o)(298K) of 3.7, 2.5, and 0.2 ± 1.75 kJ mol(-1) are proposed for 1,1-C(2)H(2)Cl(2), (E)-1,2-C(2)H(2)Cl(2), and (Z)-1,2-C(2)H(2)Cl(2), respectively, and the proton affinity of ClCCH is found to be 708.6 ± 2.5 kJ mol(-1).  相似文献   
10.
A number of subtle and confusing issues are addressed concerning large amplitude motion (LAM) coordinates (chi) for internal molecular motions, using the methyl rotation in acetaldehyde (CH(3)CHO) as a model problem. If the LAM coordinate is chosen to be one of the H-C-C-O dihedral angles rho(1), rho(2), or rho(3), it lacks the required 2pi3 periodicity, and its use is thus undesirable. An excellent local internal coordinate for this model problem is tau(3)=13(rho(1)+rho(2)+rho(3)-2pi). A similarly good but nonlocal coordinate for the adiabatic approximation of internal rotation is provided by the intrinsic reaction coordinate s. Comparison of the mass-independent V(0)(tau(3)) and the mass-dependent V(0)(s) internal rotation curves shows that the two are virtually identical for the parent isotopolog of acetaldehyde. A unified internal coordinate projection scheme for determining complementary vibrational frequencies and subsequently V(ZPVE)(chi) along a path for LAM has been formulated, where V(ZPVE)(chi) is the zero-point vibrational energy correction to the internal rotation curve. In addition to its simplicity, the projection scheme developed for a distinguished reaction path generated by constrained optimizations is appealing because the vibrational frequencies along the LAM path are invariant to chemically meaningful choices of the internal coordinates for the complementary modes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号