首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
化学   27篇
  2023年   1篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
2.
Valinomycin-based potassium-selective membranes doped with potassium tetrakis(4-chlorophenyl)borate (KClTPB) or sodium tetrakis(4-fluorophenyl)borate (NaFTPB) are studied in KCl, NaCl, and CaCl2 solutions by potentiometric and electrochemical impedance methods. Before contact with KCl, membranes doped with NaFTPB provide Nernstian potentiometric response to Na+ ions, which is lost after conditioning the membranes in KCl. The membranes doped with KClTPB even before contact with KCl give no Nernstian response to Na+ ions. In CaCl2 solutions, none of the membranes provide a regular potentiometric response. Despite the difference in potentiometric behavior, the impedance spectra of the membranes are very similar in all solutions regardless of prior conditioning of the membranes. No evidence for a hindrance towards charge transfer processes is observed. The results suggest that the membrane/solution interface is reversible for interfering ions as well as for potassium, and the contamination of solutions with the latter is the sole reason for the lack of Nernstian response in the interfering electrolytes.  相似文献   
3.
A flow cell with a radial distribution of four all-solid-state ion selective electrodes (ISEs), or alternatively three ISEs and one reference electrode, was designed and optimized for mass production. The radial distribution of the electrodes reduces the cell volume and is expected to minimize cross-contamination between different electrodes. Two different cell prototypes were developed and tested for all-solid-state K+-ISEs based on a solvent polymeric ion-selective membrane (ISM) and a conducting polymer, poly(3,4-ethylenedioxythiophene), as solid internal contact. In the first prototype, PEDOT was electropolymerized from an aqueous solution of the monomer and the doping ion salt, sodium polystyrenesulfonate (NaPSS). The second prototype employed an aqueous dispersion of PEDOT(PSS) that is commercially available (Baytron P, Bayer AG). Compared to electrochemical synthesis, solution casting of the polymer dispersion was found to be a more advantageous method to deposit the conducting polymer layer aiming at mass production. The resulting prototypes of the flow cell had a small volume (ca. 17-37 μl), which makes them suitable for application in clinical analysis.  相似文献   
4.
Journal of Solid State Electrochemistry -  相似文献   
5.
Potentiometric ion sensors were prepared from the conjugated polymer poly(3-octylthiopene) (POT). The influence of additional membrane components, including silver 7,8,9,10,11,12-hexabromocarborane (AgCB11H6Br6) and potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (KTpFPB) as lipophilic salts, and [2.2.2]p,p,p-cyclophane as silver ionophore, was studied. The membrane components were dissolved in chloroform and membranes were prepared by solution casting on glassy carbon disk electrodes. For comparison, POT-based potentiometric sensors were also prepared by galvanostatic electrosynthesis of POT from the 3-octylthiophene monomer. All the POT-based ion sensors fabricated by solution casting show Nernstian or slightly sub-Nernstian response to Ag+, even those based only on POT without any additional membrane components. The potentiometric response of electrochemically polymerized POT depends on the film thickness and the doping anion incorporated in the conducting polymer during polymerization. It is of particular importance that chemically synthesized undoped POT (without any additives) shows a sensitive and selective potentiometric response to Ag+ ions although UV-vis results show that POT remains in its undoped form, i.e., POT is not oxidized by Ag+. This indicates that undoped POT can exhibit good sensitivity and selectivity to Ag+ also in the absence of metallic silver in the polymer film. In this case, the potentiometric response is related to interactions between Ag+ and the conjugated polymer backbone. Presented at the 4th Baltic Conference on Electrochemistry, Greifswald, 13–16, 2005  相似文献   
6.
Bobacka J  Lewenstam A  Ivaska A 《Talanta》1993,40(9):1437-1444
The potentiometric response of some polythiophenes in aqueous solutions has been investigated. Polythiophene (PT), poly(2,2'-bithiophene) (PBT), poly(3-methylthiophene) (PMT), poly(3-octylthiophene) (POT) and poly(4,4'-dioctyl2,2'-bithiophene) (POTd) were electrochemically deposited on platinum in 0.1M LiBF(4)-propylene carbonate solution containing the corresponding monomer or dimer. Polymer electrodes were also prepared by solution casting of chemically synthesized poly(3-octylthiophene) (POTc) dissolved in chloroform. After film deposition (electrochemical or chemical) the polymer coated electrodes were used as indicator electrodes in potentiometric measurements. The open-circuit potential of the polymer electrodes was measured in aqueous solutions containing inorganic salts (10(-1)-10(-4)M). Interestingly, all the polythiophenes studied were found to give a cationic response to monovalent cations such as H(+), Li(+), Na(+), K(+) and NH(+)(4) (Cl(-) salts). The slope, calculated from the linear part of the response curve, was found to depend on the polythiophene used but always remained lower than that predicted for a Nernstian response. The polythiophenes also showed some sensitivity to divalent cations such as Mg(2+) and Ca(2+) (Cl(-)-salts). POT was used as the polymer to study the influence of the polymerization conditions on the potentiometric response. By investigating different polymers from the polythiophene family it was possible to evaluate how the starting material (monomer or dimer) and the presence of alkyl side-chains influence the potentiometric response of the polymer membranes.  相似文献   
7.
Solid-contact Pb2+-selective electrodes (Pb2+-ISEs) were prepared by using polybenzopyrene doped with eriochrome black T as solid contact material and a conventional polyvinyl chloride membrane with lead ionophore IV as selective compound. Nernstian response down to 10?9?mol?dm?3 Pb2+ was obtained by careful control of the electrode conditioning process. Furthermore, the response at lowest concentrations was retained by exposing the solid-contact Pb2+-ISEs to a solution containing Na2EDTA. Finally, the solid-contact Pb2+-ISEs were used in the determination of lead in a synthetic sample (pPb2+?=?7.40). The analysis of the sample was done with direct potentiometry (pPb2+?=?7.64?±?0.11) and single standard addition method (pPb2+?=?7.27?±?0.07). These results were in good agreement with those obtained by inductively coupled plasma–mass spectrometry (pPb?=?7.34). The renewable response of the Pb2+-ISEs at low concentrations opens interesting possibilities when dealing with trace-level measurements of Pb2+.  相似文献   
8.
A novel polyacrylate-based matrix for potentiometric ion-selective electrodes has been developed. Isododecyl acrylate, acrylonitrile and hexanedioldiacrylate co-monomers along with the thermo-initiator 2,2-dimethoxy-2-phenylacetophenone were used as polymeric matrix components. A lead(II)-selective electrode (Pb-ISE) was constructed using the above matrix. The electrode showed comparable analytical performance in the micromolar range to Pb-ISEs with conventional poly(vinyl chloride)-based membranes containing neutral ionophore and with solid-state membranes containing a mixture of lead sulphide and silver sulphide. Electrochemical impedance spectroscopy studies revealed much lower ion mobility in the polyacrylate membrane than in plasticized poly(vinyl chloride) membranes. This result additionally indicates the possibility of obtaining a lower detection limit for ISEs using the new acrylate matrix.  相似文献   
9.
Five aromatic borate anions, namely tetrakis(4-phenoxyphenyl)borate (1), tetrakis(biphenyl)borate (2), tetrakis(2-naphthyl)borate (3), tetrakis(4-phenylphenol)borate (4), and tetrakis(4-phenoxy)borate (5), have been prepared and tested as ion-recognition sites in chemical sensors for certain aromatic cations and metal ions. To gain further insight into the complexation of the cations, some complexes have been prepared and structurally characterized. The complexation behavior of 1 and 2 towards N-methylpyridinium (6), 1-ethyl-4-(methoxycarbonyl)pyridinium (7), tropylium (8), imidazolium (9), and 1-methylimidazolium (10) cations has been studied, and the stability constants of the complexes of 1 with cations 6 and 8 have been measured to compare them with the values for the previously studied complexes of tetraphenylborate. The structures of the borate anions and their complexes have been characterized by NMR and mass spectrometric methods. X-ray crystal structures have been determined for potassium tetrakis(4-phenoxyphenyl)borate (K(+)1), N-methylpyridinium tetrakis(4-phenoxyphenyl)borate (61), 1-ethyl-4-(methoxycarbonyl)pyridinium tetrakis(4-phenoxyphenyl)borate (71), tropylium tetrakis(4-phenoxyphenyl)borate (81), and imidazolium tetrakis(biphenyl)borate (92). The results show that borate derivatives are potential candidates for a completely new family of charged carriers for use in cation-selective electrodes.  相似文献   
10.
Poly(3,4-ethylenedioxythiophene) (PEDOT) films doped with adenosine triphosphate (ATP) are used to study the biologically relevant competitive magnesium and calcium ion-exchange at ATP membrane sites. It is shown, by atomic force microscopy (AFM) and scanning electron microscopy (SEM), that the surface topography and morphology of the PEDOT-ATP films determines the quality of their potentiometric response. More smooth and less rough films result in better potentiometric characteristics, particularly in a faster response. The topography/morphology of the PEDOT-ATP films is influenced by conditions during electrodeposition (electrochemical method of deposition, pH, concentration of electrolytes) and post-deposition soaking (including net-time of soaking), as evidenced by X-ray photoelectron spectroscopy (XPS) and energy dispersive analysis of X-rays (EDAX).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号