首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   7篇
物理学   4篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2011年   2篇
  2010年   2篇
  2006年   1篇
  2004年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The complexity of selenium (Se) chemistry in the environment and in living organisms presents broad analytical challenges. The selective qualitative and quantitative determination of particular species of this element is vital in order to understand selenium's metabolism and significance in biology, toxicology, clinical chemistry and nutrition. This calls for state-of-the-art analytical techniques such as hyphenated methods that are reviewed with particular emphasis on interfaced separation with element-selective detection and identification of the detected selenium compounds. Atomic spectral element specific detection for monitoring chromatographic eluent enabled quantitative determination of selenium species in selenized yeast and qualitative measurement for breath samples. Gas chromatography with atomic emission detection (AED) of ethylated species and fluoroacid ion pair HPLC applied to the analysis of currently produced or archived selenized yeast and Brassica juncea have revealed the presence of a previously unrecognised Se-S amino acid, S-(methylseleno)cysteine.  相似文献   
2.
Selenium-accumulating plants such as Brassica juncea (Indian mustard) concentrate the element in plant shoots and roots. Such behavior may provide a cost-effective technology to clean up contaminated soils and waters that pose major environmental and human health problems (phytoremediation). Such ability to transform selenium into bioactive compounds has important implications for human nutrition and health. Element selective characterization of B. juncea grown in the presence of inorganic selenium under hydroponic conditions provides valuable information to better understand selenium metabolism in plants. The present work determines both previously observed organoselenium species such as selenomethionine and Se-methylselenocysteine and for the first time detects the newly characterized S-(methylseleno)cysteine in plant shoots and roots when grown in the presence of selenate or selenite as the only selenium source. A key feature of this study is the complementary role of selenium and sulfur specific chromatographic detection by HPLC with interfaced inductively coupled plasma mass spectrometry (ICP-MS) detection and by derivatization GC with interfaced atomic spectral emission. HPLC-ICP-MS limits of detection for such species were in the range 5-50 ng Se mL(-1) in the injected extracts. Speciation profiles are compared with those of selenium-enriched yeast by both HPLC-ICP-MS and GC-AED.  相似文献   
3.
An experimental study of runaway electrons in the EAST tokamak has been performed by a recently developed multi‐channel hard x‐ray diagnostics based on NaI(TL) scintillator detectors. It is found that in the current quench phase, the inductive loop voltage plays an important role in the generation of runaway electrons. And the avalanche mechanism was the main mechanism for runaway electrons after the disruptions. The distribution and transportation of runaway electrons were also investigated by multi‐channel hard x‐ray diagnostics. It is also found that the intensity of runaway electrons emission in the core plasma was much higher than those in the downside of the cross‐section, while the emission intensity of runaway electrons in the core plasma was almost the same. Calculated shrinking coefficient of runaway electrons emission after the plasma disruption was about 26 m/s according to the experimental data (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
4.
Hydrogels are cross‐linked three‐dimensional polymeric networks that play a vital role in solving the pharmacological and clinical limitations of the existing systems due to their unique physical properties such as affinity for biological fluids, tunable porous nature, high water content, ease of preparation, flexibility, and biocompatibility. Hydrogel also mimics the living natural tissue, which opens several opportunities for its use in biomedical areas. Injectable hydrogel allows temporal control and exceptional spatial arrangements and can offset hitches with established hydrogel‐based drug delivery systems. Here, we review the recent development of injectable hydrogels and their significance in the delivery of therapeutics such as cells, genes, and drug molecules and how these innovatory systems can complement the current delivery systems.  相似文献   
5.
Production of runaway electrons during disruptions has been observed in the HT‐7 Tokamak. The runaway current plateaus, which can carry part of the pre‐disruptive current, are observed in lower‐hybrid current drive (LHCD) limiter discharges. It is found that the runaway current can mitigate the disruptions effectively. We can use gas puffing to increase the line‐averaged density to restrain the runaway electrons and rebuild the plasmas after the disruptions. Detailed observations are presented on the runaway electrons generated following disruptions in the HT‐7 tokamak discharges. The results indicate that the magnetic oscillations play a significant role in the loss of runaway electrons in disruptions. There are two important preconditions to rebuild plasmas by runaway electrons after the disruptions. One of them are weak magnetic oscillations; another one are LHWs (lower‐hybrid waves) (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
6.
In the quest of ensuring successful pigment dispersion, additives are used to aid dispersion and stabilization of pigment particles through attraction forces of various chemical nature including van der waals and “liquid bridge” forces as well as anchor groups with high affinity for pigment surface. On the other hand, dispersion efficiency is significantly dependent on the effectiveness of various dispersion equipment and their energy transfer, dispersion force and effectiveness. The common denominator for all this equipment are that; dispersion is achieved by shearing forces produced by the application of high positive and negative attrition. This article reviews and explores the nature and the significance of the various methods and forces in pigment dispersion and the various stabilization mechanisms adopted in producing stably fine pigment particles, dispersion application as well as future prospects.  相似文献   
7.
A carbon nanofiber (CNF) electrode array was integrated with the Wireless Instantaneous Neurotransmitter Concentration Sensor System (WINCS) for the detection of dopamine using fast scan cyclic voltammetry (FSCV). Dopamine detection performance by CNF arrays was comparable to that of traditional carbon fiber microelectrodes (CFMs), demonstrating that CNF arrays can be utilized as an alternative carbon electrode for neurochemical monitoring.  相似文献   
8.
The pivot bearing is an important mechanical component in HDD. Several quasi-rigid (QR) body motion modes of the HDD are related to the stiffness of the pivot bearing such as the axial translation mode, the lateral translation mode and the rocking mode. In the shock simulation of the HDD, the pivot bearing is often simplified to identical theoretical models wherein the bearing is simulated with springs or beams. The overall axial stiffness and the radial stiffness of these models are often carefully checked and match well with the experimental values. However, how well these theoretical models represent the rotational stiffness of the bearing is still not fully understood. This is partly due to the difficulties in obtaining the experimental rotational stiffness of the pivot bearing. In this paper, three different theoretical models are examined for the simulation of the bearing. The rotational stiffness of these three theoretical models is derived analytically. The theoretical formulations are verified with the finite element analysis results.  相似文献   
9.
Journal of Solid State Electrochemistry - Development of transition metal phosphides with tunable morphology and chemical composition is a potential way to construct electrocatalysts with superior...  相似文献   
10.
Nimodipine (NMD) is a calcium channel blocker that is used in the treatment of cerebrovascular disorders, such as stroke indicated for biological rhythm and neurological disorders. According to biopharmaceutical classification, NMD is categorized as a class ΙΙ drug, meaning it has a poor solubility profile. The objective of this experiment is to prepare multicomponent systems to enhance the solubility, dissolution, and bioavailability of NMD. Inclusion complex and solvent evaporation techniques have been exploited to overcome this challenge. in vitro dissolution studies and solubility, the profile was performed in three pH media (pH 7.5, 1.2, and 6.8). The drug release at (Q60min) for SD‐PVP3 was 33‐fold higher than pure NMD in double‐distilled water. The solubility of SD PVP3 was about 30 times higher than plain NMD in double‐distilled water. A pharmacokinetic study in rats indicated that the AUC0‐720 value of the inclusion complex (NMD‐KD) was 1.63‐fold higher than pure NMD. At the same time, the solid dispersion (NMD‐SD PVP3) was 3.94‐fold higher than that of plain NMD, indicating a significant increase in the bioavailability of NMD. The combination of the inclusion complex and solvent evaporation method led to the formation of new solid dispersions (SD PLX and SD PVP), which significantly increased the solubility, dissolution, and the oral bioavailability of NMD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号