首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   1篇
物理学   3篇
  1999年   1篇
  1993年   1篇
  1991年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
The relaxation of rabbit aorta rings induced by low-power laser radiation was investigated in vitro to determine the location of the chromophore(s) responsible for this response and evaluate possible mechanisms. An action spectrum for relaxation was measured on rabbit thoracic aorta rings precontracted with norepinephrine. The decrease in isometric tension was measured during exposure to laser light (351–625 nm) delivered via a fiber optic to a small spot on the adventitial surface. The shortest UV wavelength (351 nm) was 35-fold more effective than 390 nm and 1700-fold more effective than 460 nm. Ultraviolet wavelengths also produced greater maximum relaxation (0.40–0.45) than visible wavelengths (0.20–0.25), suggesting that photovasorelaxation involves more than one chromophore.
The adventitial layer was not necessary for photovasorelaxation, indicating that the light is absorbed by a chromophore in the medial layer. The same degree of relaxation was obtained on rings without adventitia when either one-half of the ring, or a small spot was irradiated indicating that communication between smooth muscle cells spreads a signal from the area illuminated to the entire ring.
The mechanism for photovasorelaxation was investigated using potential inhibitors. N -monomethyl-l-arginine and N -amino-L-arginine, inhibitors of nitric oxide synthase, did not alter photovasorelaxation nor did indomethacin, an inhibitor of cyclooxygenase, and zinc protoporphyrin, an inhibitor of heme oxygenase.  相似文献   
3.
Shock waves generated by a laser-induced plasma were investigated using a pump-and-probe technique. Both 7-ns and 40-ps laser pulses at 1.06 m were employed to initiate breakdown in water. Two He-Ne laser beams were used as a velocity probe, allowing the accurate measurement of the shock velocity around the plasma. The maximum shock pressure was determined from the measured shock velocities, the jump condition and the equation of state for water. The conservation of the total momentum of the shock front was used to derive expressions for the shock velocity, particle velocity and shock pressure vs. the distance (r) from the center of the plasma. For a shock wave of spherical symmetry, the shock pressure is proportional to 1/r 2. Our work shows that the expanding plasma initially induces a shock wave; the shock wave dissipates rapidly becoming an acoustic wave within 300–500 m.  相似文献   
4.
Received: 3 August 1998/Revised version: 20 October 1998  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号