首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   6篇
  国内免费   2篇
化学   79篇
晶体学   1篇
力学   2篇
数学   3篇
物理学   23篇
  2023年   2篇
  2021年   1篇
  2020年   4篇
  2018年   4篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   6篇
  2011年   8篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   12篇
  2006年   9篇
  2005年   11篇
  2004年   10篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1980年   1篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
1.
2.
3.
A study of the emulsification of silicone oil and water in the presence of partially hydrophobic, monodisperse silica nanoparticles is described. Emulsification involves the fragmentation of bulk liquids and the resulting large drops and the coalescence of some of those drops. The influence of particle concentration, oil/water ratio, and emulsification time on the relative extents of fragmentation and coalescence during the formation of emulsions, prepared using either batch or continuous methods, has been investigated. For batch emulsions, the average drop diameter decreases with increasing particle concentration as the extent of limited coalescence is reduced. Increasing the oil volume fraction in the emulsion at fixed aqueous particle concentration results in an increase in the average drop diameter together with a dramatic lowering of the uniformity of the drop size distribution as coalescence becomes increasingly significant until catastrophic phase inversion occurs. For low oil volume fractions (phi(o)), fragmentation dominates during emulsification since the mean drop size decreases with emulsification time. For higher phi(o) close to conditions of phase inversion, coalescence becomes more prevalent and the drop size increases with time with stable multiple emulsions forming as a result.  相似文献   
4.
Stable carbon dioxide-in-water emulsions were formed with silica nanoparticles adsorbed at the interface. The emulsion stability and droplet size were characterized with optical microscopy, turbidimetry, and measurements of creaming rates. The increase in the emulsion stability as the silica particle hydrophilicity was decreased from 100% SiOH to 76% SiOH is described in terms of the contact angles and the resulting energies of attachment for the silica particles at the water-CO(2) interface. The emulsion stability also increased with an increase in the particle concentration, CO(2) density, and shear rate. The dominant destabilization mechanism was creaming, whereas flocculation, coalescence, and Ostwald ripening played only a minor role over the CO(2) densities investigated. The ability to stabilize these emulsions with solid particles at CO(2) densities as low as 0.739 g/mL is particularly relevant in practical applications, given the difficulty in stabilizing these emulsions with surfactants, because of the unusually weak solvation of the surfactant tails by CO(2).  相似文献   
5.
We have investigated the potential of utilizing naturally occurring spore particles of Lycopodium clavatum as sole emulsifiers of oil and water mixtures. The preferred emulsions, prepared from either oil-borne or aqueous-borne dispersions of the monodispersed particles of diameter 30 microm, are oil-in-water. The particles act as efficient stabilizers for oils of different polarity. Droplets as large as several millimeters are stable to coalescence indefinitely, despite the low coverage of interfaces by particles observed microscopically. Consistent with the emulsion findings, we discover that particles spontaneously adsorb to bare oil-water interfaces of single drops from oil dispersions, whereas adsorption is less spontaneous and extensive from aqueous dispersions. Monolayers of the spore particles at both air-water and oil-water planar interfaces contain particles in an aggregated state forming clusters and chains. The influence of particle concentration, oil/water ratio, and additives in the aqueous phase is studied.  相似文献   
6.
7.
8.
An efficient synthesis of spirocyclic triazolooxazine nucleosides is described. This was achieved by the conversion of β‐D ‐psicofuranose to the corresponding azido‐derivative, followed by alkylation of the primary alcohol with a range of propargyl bromides, obtained by Sonogashira chemistry. The products of these reactions underwent 1,3‐dipolar addition smoothly to generate the protected spirocyclic adducts. These were easily deprotected to give the corresponding ribose nucleosides. The library of compounds obtained was investigated for its antiviral activity using MHV (mouse hepatitis virus) as a model wherein derivative 3 f showed the most promising activity and tolerability.  相似文献   
9.
A surfactant, R-6-AO, derived from dehydroabietic acid has been synthesized. It behaves as a highly efficient low-molecular-weight hydrogelator with an extremely low critical gelation concentration (CGC) of 0.18 wt % (4 mm ). R-6-AO not only stabilizes oil-in-water (O/W) emulsions at concentrations above its critical micelle concentration (cmc) of 0.6 mm , but also forms gel emulsions at concentrations beyond the CGC with the oil volume fraction freely adjustable between 2 % and 95 %. Cryo-TEM images reveal that R-6-AO molecules self-assemble into left-handed helical fibers with cross-sectional diameters of about 10 nm in pure water, which can be turned to very stable hydrogels at concentrations above the CGC. The gel emulsions stabilized by R-6-AO can be prepared with different oils (n-dodecane, n-decane, n-octane, soybean oil, olive oil, tricaprylin) owing to the tricyclic diterpene hydrophobic structure in their molecules that enables them to adopt a unique arrangement in the fibers.  相似文献   
10.
Using a system of modified silica particles and mixtures of water and 2,6-lutidine to form particle-stabilized emulsions, we show that subtle alterations to the hydration of the particle surface can cause major shifts in emulsion structure. We use fluorescence confocal microscopy, solid state nuclear magnetic resonance (NMR) and thermo-gravimetric analysis (TGA) to explore this sensitivity, along with other shifts caused by modifications to the silica surface chemistry. The silica particles are prepared by a variant of the St?ber procedure and are modified by the inclusion of 3-(aminopropyl)triethoxysilane and the dye fluorescein isothiocyanate. Treatment prior to emulsification consists of gently drying the particles under carefully controlled conditions. In mixtures of water and 2,6-lutidine of critical composition, the particles stabilize droplet emulsions and bijels. Decreasing particle hydration yields an inversion of the emulsions from lutidine-in-water (L/W) to water-in-lutidine (W/L), with bijels forming around inversion. So dependent is the emulsion behavior on particle hydration that microscopic differences in drying within a particle sample can cause differences in the wetting behavior of that sample, which helps to stabilize multiple emulsions. The formation of bijels at emulsion inversion is also crucially dependent on the surface modification of the silica.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号