首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
化学   53篇
物理学   4篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2013年   5篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   5篇
  2006年   10篇
  2005年   4篇
  2004年   1篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
排序方式: 共有57条查询结果,搜索用时 31 毫秒
1.
The crystallization behavior of a series of poly(ethylene‐co‐butylene naphthalate) (PEBN) random copolymers was studied. Wide‐angle X‐ray diffraction (WAXD) patterns showed that the crystallization of these copolymers could occur over the entire range of compositions. This resulted in the formation of poly(ethylene naphthalate) or poly(butylene naphthalate) crystals, depending on the composition of the copolymers. Sharp diffraction peaks were observed, except for 50/50 PEBN. Eutectic behavior was also observed. This showed isodimorphic cocrystallization of the PEBN copolymers. The variation of the enthalpy of fusion of the copolymers with the composition was estimated. The isothermal and nonisothermal crystallization kinetics were studied. The crystallization rates were found to decrease as the comonomer unit content increased. The tensile properties were also measured and were found to decrease as the butylene naphthalate content of the copolymers increased. For initially amorphous specimens, orientation was proved by WAXD patterns after drawing, but no crystalline reflections were observed. However, the fast crystallization of drawn specimens occurred when they were heated above the glass‐transition temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 843–860, 2004  相似文献   
2.
A series of chain-extended PET samples were obtained by the use of different amounts of a diepoxide as chain extender, which was prepared for this purpose. These samples exhibited different intrinsic viscosities and degrees of branching or cross-linking. The effects of this differentiation on the thermal properties were studied by differential scanning calorimetry. The thermal parameters studied were the glass transition temperature (Tg), the cold-crystallization temperature (Tcc), the melting temperature (Tm), the enthalpy (ΔHm) and the degree of crystallinity. The data revealed that, the higher the quantity of chain extender or the chain extension time, the higher Tgand Tcc, but the lower Tmand ΔHm, i.e. the more amorphous the chain-extended samples, as also shown by density measurements. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
3.
In this investigation the production of secondary value-added products, such as alkyd resins, derived from the glycolysis of poly(ethylene terephthalate) (PET) is examined as an effective way for its recycling. PET was taken from common soft-drink bottles and diethylene glycol (DEG) was used for the depolymerization at several initial molar ratios. The oligomers obtained were analyzed according to their average molecular weights. Furthermore, the glycolyzed PET products (oligomers) were reacted with maleic anhydride, phthalic anhydride and propylene glycol to form unsaturated polyester resins. These were subsequently mixed with styrene and cured using the benzoyl peroxide/amine initiator system to carry out the reaction in ambient temperature. The curing characteristics of the resins produced were investigated with respect to the initial molar ratio of DEG/PET as well as the initial initiator concentration. Finally, the mechanical properties (tensile strength and elongation at the break point) of the resins were compared with the conventional general purpose resin and were found to be comparable.  相似文献   
4.
In this study, biobased furan dicarboxylate polyesters have been prepared using 2,5‐furandicarboxylic acid (FDCA) and diols with high number of methylene groups (long‐chain diols), namely, 8, 9, 10, and 12. Because of the high boiling points of these diols, a modified procedure of the well‐known melt polycondensation was applied in this work. According to this, the dimethyl ester of FDCA (DMFD) reacted in the first transesterification stage with the corresponding diols forming bis‐hydroxy‐alkylene furan dicarboxylates (BHFD). In the second stage, the BHFD reacted with DMFD again at temperatures of 150–170 °C (for 4–5 h), and in the final stage, the temperature was raised to 210–230 °C (vacuum was applied for 2–3 h). The molecular weight of the polyesters and the content of oligomers, as was verified by gel permeation chromatography analysis, depend on the polycondensation time and temperature. The chemical structure of the polyesters was verified from 1H NMR spectroscopy. All the polymers were found to be semicrystalline, with melting temperatures from 69 to 140 °C depending on the diol used. In addition, the mechanical properties also varied with the type of diol. The higher values were observed for poly(octylene 2,5‐furanoate), whereas the lowest values were observed for poly(dodecylene 2,5‐furanoate) with the higher number of methylene groups in its repeating unit. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2617–2632  相似文献   
5.
A series of iPP/SiO2 nanocomposites, containing 1, 2.5, 5, 7.5, and 10 wt.‐% fumed silica nanoparticles, were prepared by melt mixing in a twin screw co‐rotating extruder. The effect of different extrusion parameters was evaluated. The size of aggregates increased with increase in SiO2 content and repetition of the mixing process improved the filler's dispersion. A similar effect was also exhibited by either increasing the rotor speed or the mixing temperature, with the latter being more pronounced at the ranges studied. The mechanical properties of the prepared nanocomposites were evaluated and various models used to explain the observed enhancements. However, only the three‐phase model could provide some correlation with the experimental results. All nanocomposites displayed lower permeability to gases.

  相似文献   

6.
The most widely-used inorganic pigments of Byzantine and post-Byzantine hagiography are earth pigments called ochres such as, red and yellow ochres, limonite, goethite, raw and burnt sienna, caput mortuum and hematite. The present experimental work proposes a technique of differentiation that allows one to distinguish among all the different kinds of iron oxides, thereby providing a better understanding of the painting technique used on portable icons and wall paintings. The ratios between the main spectroscopic peaks, attributable to the major components usually present in ochres, were calculated and compared, one against the another, from the spectra obtained through micro-Raman spectroscopy. Elementary composition is also revealed through a scanning electron microscopy (SEM) analysis. The possibility for detailed study on a particular Byzantine ochre palette can thus be performed based on the small differences in its nature and composition. These differences can first be observed and then measured among all of the natural earth pigments, through microRaman and microFTIR spectroscopies.  相似文献   
7.
The preparation of the biodegradable aliphatic polyester poly(propylene succinate) (PPSu) using 1,3-propanediol and succinic acid is presented. Its synthesis was performed by two-stage melt polycondensation in a glass batch reactor. The polyester was characterized by gel permeation chromatography, 1H NMR spectroscopy and differential scanning calorimetry (DSC). It has a number average molecular weight 6880 g/mol, peak temperature of melting at 44 °C for heating rate 20 °C/min and glass transition temperature at −36 °C. After melt quenching it can be made completely amorphous due to its low crystallization rate. According to thermogravimetric measurements, PPSu shows a very high thermal stability as its major decomposition rate is at 404 °C (heating rate 10 °C/min). This is very high compared with aliphatic polyesters and can be compared to the decomposition temperature of aromatic polyesters. TG and Differential TG (DTG) thermograms revealed that PPSu degradation takes place in two stages, the first being at low temperatures that corresponds to a very small mass loss of about 7%, the second at elevated temperatures being the main degradation stage. Both stages are attributed to different decomposition mechanisms as is verified from activation energy determined with isoconversional methods of Ozawa, Flyn, Wall and Friedman. The first mechanism that takes place at low temperatures is auto-catalysis with activation energy E = 157 kJ/mol while the second mechanism is a first-order reaction with E = 221 kJ/mol, as calculated by the fitting of experimental measurements.  相似文献   
8.
In the present study, a series of iPP/SiO2 nanocomposites, containing 1, 2.5, 5, 7.5, 10 and 15 wt% SiO2 nanoparticles, were prepared by melt mixing in a twin screw co-rotating extruder. Poly(propylene-g-maleic anhydride) copolymer (PP-g-MA) containing 0.6 wt% maleic anhydride content was added to all nanocomposites at three different concentrations, 1, 2.5 and 5 wt%, based on silica content. Mechanical properties such as tensile strength at break and Young’s modulus were found to increase and to be mainly affected by the content of silica nanoparticles as well as by the copolymer content. For the tensile strength at break as well as for yield point, a maximum was observed, corresponding to the samples containing 2.5-5 wt% SiO2. At higher concentrations, large nanosilica agglomerates are formed that have as a result a decrease in tensile strength. Young’s modulus increases almost linearly on the addition of SiO2, and takes values up to 60% higher than that of neat iPP. Higher concentrations of PP-g-MA resulted in a further enhancement of mechanical properties due to silica agglomerate reduction. This finding was verified from SEM and TEM micrographs. Evidently the surface silica hydroxyl groups of SiO2 nanoparticles react with maleic anhydride groups of PP-g-MA and lead to a finer dispersion of individual SiO2 nanoparticles in the iPP matrix. The enhanced adhesion in the interface of the two materials, as a result of the mentioned reaction, has been studied and proved by using several equations. The increased Vicat point of all nanocomposites, by increasing the PP-g-MA content, can also be mentioned as a positive effect.  相似文献   
9.
The thermal degradation mechanism of the aliphatic biodegradable polyester poly(propylene succinate) (PPSu) and the effect of the polymerisation catalyst (tetrabutyl titanate, TBT) were studied using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) and TGA analysis. It is found from mass ions detection, that the decomposition takes place, mainly, through β-hydrogen bond scission and secondarily by α-hydrogen bond scission. At low pyrolysis temperatures (360 and 385 °C) gases as well as succinic anhydride, succinic acid and propanoic acid are mainly produced while allyl and diallyl succinates are formed in smaller quantities. At high temperatures (450 °C) the behaviour is inverted. Using the isoconversional methods of Ozawa and Friedman it is founded that PPSu degrades by two consecutive mechanisms. According to this analysis the first mechanism that takes place at low temperatures is autocatalysis with an activation energy of about E = 110-120 kJ/mol. The second mechanism is a first-order reaction with E of 220 kJ/mol, and corresponds to the extended β- and α-hydrogen bond scissions. These activation energies are slightly dependent on the catalyst amount and are shifted towards lower values with an increase of TBT content from 3 × 10−4 to 3 × 10−1 mol TBT/mol succinic acid (SA).  相似文献   
10.
Two aliphatic polyesters that consisted from succinic acid, ethylene glycol and butylene glycol, —poly(ethylene succinate) (PESu) and poly(butylene succinate) (PBSu)—, were prepared by melt polycondensation process in a glass batch reactor. These polyesters were characterized by DSC, 1H NMR and molecular weight distribution. Their number average molecular weight is almost identical in both polyesters, close to 7000 g/mol, as well as their carboxyl end groups (80 eq/106 g). From TG and Differential TG (DTG) thermograms it was found that the decomposition step appears at a temperature 399 °C for PBSu and 413 °C for PESu. This is an indication that PESu is more stable than PBSu and that chemical structure plays an important role in the thermal decomposition process. In both polyesters degradation takes place in two stages, the first that corresponds to a very small mass loss, and the second at elevated temperatures being the main degradation stage. The two stages are attributed to different decomposition mechanisms as is verified from the values of activation energy determined with iso-conversional methods of Ozawa, Flyn, Wall and Friedman. The first mechanism that takes place at low temperatures, is auto-catalysis with activation energy E = 128 and E = 182 kJ/mol and reaction order n = 0.75 and 1.84 for PBSu and PESu, respectively. The second mechanism is nth-order reaction with E = 189 and 256 kJ/mol and reaction order n = 0.68 and 0.96 for PBSu and PESu, respectively, as they were calculated from the fitting of experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号