首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   2篇
化学   79篇
晶体学   2篇
力学   1篇
数学   6篇
物理学   11篇
  2023年   3篇
  2022年   4篇
  2021年   5篇
  2020年   6篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   9篇
  2012年   8篇
  2011年   8篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   5篇
  2006年   5篇
  2005年   3篇
  2002年   3篇
  2001年   2篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
1.
The possibility of excited‐state protomeric shifts in the biologically important molecule, alloxan, is investigated. We have focused on the S1 and T1 excited states of alloxan and its hydroxy tautomers. Modifications brought in by excitation on the relative stabilities, activation barriers, and optimized geometries, computed at the MNDO, AM1, and PM3 levels of approximation, have been discussed for both excited electronic states. The absorption and fluorescence spectra for the three tautomers are also discussed. Results show significant changes in the geometries on excitation, although the changes are similar for the singlet and triplet excited states. Though the relative stability orders do not change, the 2‐hydroxy tautomer is stabilized, while the 4‐hydroxy tautomer gets destabilized on excitation. The excited states are (n,π*) states, involving the promotion of a nonbonding oxygen lone pair from the CO? CO? CO moiety, which explains why the oxygens of this group become less basic and the 4‐hydroxy tautomer gets destabilized on excitation. However, the activation barriers do not reduce significantly on excitation, and this precludes the possibility of ground‐ or excited‐state proton transfer in the gas phase. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   
2.
(E)-4-(2',4',5'-trimethoxyphenyl)but-1,3-diene (4) and (E)-4-(2',4',5'-trimethoxyphenyl)but-1-ene (6), bioactive phenylbutanoids of Zingiber cassumunar, were synthesized exclusively with trans geometry. Treatment of methylmagnesium iodide with (E)-2',4',5'-trimethoxycinnamaldehyde (2), an oxidized product of abundantly available toxic (Z)-phenylpropanoid (1) of Acorus calamus, gave (E)-4-(2',4',5'-trimethoxyphenyl)but-3-en-2-ol (3) which upon dehydration with copper sulphate/silica gel under microwave irradiation for 3 min afforded 4 in 58% yield. Further, catalytic hydrogenation of 4 with 10% Pd/C afforded 4-(2',4',5'-trimethoxyphenyl)butane (5) which upon dehydrogenation with DDQ/SiO2 afforded hypolipidemic 6 in 54% yield.  相似文献   
3.
The tetravalent metal acid (TMA) salt amorphous zirconium phosphate (ZP), an inorganic ion exchanger, has been synthesized by sol-gel method. The material has been characterized by elemental analysis (ICP-AES), thermal analysis (TGA, DSC), FT-IR and X-ray diffraction studies. Chemical resistivity of the material in various media-acids, bases and organic solvents has been assessed. The Na+ ion exchange capacity (IEC) and the effect of heating on the IEC have been determined, and showed the distribution and elution behavior of ZP towards several metal ions in different electrolyte media/concentrations. Based on the distribution studies, a few binary metal ion separations have been achieved.  相似文献   
4.
N-((2-chloroquinolin-3-yl)methylene)aniline (CQM) and N-((2-chloroquinolin-3-yl)methylene)-5-methylthiazol-2-amine (CQMA) were synthesized. The effect of CQM and CQMA have been investigated against mild steel (MS) in 1 N HCl solutions using conventional weight loss, potentiodynamic polarization, linear polarization, electrochemical impedance spectroscopy, UV–Vis spectroscopy and scanning electron microscopic studies. The losses in the weights of MS samples have proved that both CQM and CQMA are efficient inhibitors. The mixed mode of inhibition was confirmed by electrochemical polarizations. The adsorptions of these inhibitors are found to follow the Langmuir adsorption isotherm. CQM and CQMA adsorbs on the MS sample by chemisorptions.  相似文献   
5.
The synthesis of calcium complexes ligated by three different chiral iminophosphonamide ligands, L- H ( L =[Ph2P{N(R)CH(CH3)Ph}2]), L′ -H ( L′ =[Ph2P{NDipp}{N(R)CH(CH3)Ph}]), (Dipp=2,6-iPr2C6H3), and L′′ -H ( L′′ =[Ph2P{N(R)CH(CH3)naph}2]), (naph=naphthyl) is presented. The resulting structures [ L 2Ca], [ L′ 2Ca], and [ L′′ 2Ca] represent the first examples of enantiopure homoleptic calcium complexes based on this type of ligands. The calcium complexes show blue–green photoluminescence (PL) in the solid state, which is especially bright at low temperatures. Whereas the emission of [ L′′ 2Ca] is assigned to the fluorescence of naphthyl groups, the PL of [ L 2Ca] and [ L′ 2Ca] is contributed by long-lived phosphorescence and thermally activated delayed fluorescence (TADF), with a strong variation of the PL lifetimes over the temperature range of 5–295 K. Furthermore, an excellent catalytic activity was found for these complexes in hydroboration of ketones at room temperature, although no enantioselectivity was achieved.  相似文献   
6.
Bergenia (Saxifragaceae) genus is native to central Asia and encompasses 32 known species. Among these, nine are of pharmacological relevance. In the Indian system of traditional medicine (Ayurveda), “Pashanabheda” (stone breaker) is an elite drug formulation obtained from the rhizomes of B. ligulata. Bergenia species also possess several other biological activities like diuretic, antidiabetic, antitussive, insecticidal, anti-inflammatory, antipyretic, anti-bradykinin, antiviral, antibacterial, antimalarial, hepatoprotective, antiulcer, anticancer, antioxidant, antiobesity, and adaptogenic. This review provides explicit information on the traditional uses, phytochemistry, and pharmacological significance of the genus Bergenia. The extant literature concerned was systematically collected from various databases, weblinks, blogs, books, and theses to select 174 references for detailed analysis. To date, 152 chemical constituents have been identified and characterized from the genus Bergenia that belong to the chemical classes of polyphenols, phenolic-glycosides, lactones, quinones, sterols, tannins, terpenes, and others. B. crassifolia alone possesses 104 bioactive compounds. Meticulous pharmacological and phytochemical studies on Bergenia species and its conservation could yield more reliable compounds and products of pharmacological significance for better healthcare.  相似文献   
7.
In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe3O4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe3O4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients.  相似文献   
8.
Metal(IV) phosphates of tin, zirconium and titanium in different morphological forms, viz. amorphous, calcined and crystalline, have been used as catalysts for selective cyclodehydration of 1,4-butanediol to tetrahydrofuran. A comparative study of the three catalysts for the above reaction has been carried out to understand the effect of their composition and morphology on the catalytic activity.  相似文献   
9.
Core–shell nanostructures have emerged as an important class of functional materials with potential applications in diverse fields, especially in health sciences. In this article, nanoengineering of novel magnetic colloidal dispersion containing surface modifiable silica with a core of single domain magnetite nanoparticles loaded with photosensitizer (PS) drug “Methylene blue” (MB) has been described. Magnetite core is produced by the well-established chemical coprecipitation technique and silica shell is formed over it by the modified hydrolysis and condensation of TEOS (tetraethyl orthosilicate). Conditions for reaction kinetics have been established to tailor the core–shell structures in the form of nanospheres and nanocapsules. MB is loaded into the nanostructures by demethylation reaction. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated MB loaded superparamagnetic magnetite-silica nanostructures with tailored morphology, tunable loading, and excellent magnetic properties.  相似文献   
10.
Novel hybrid material, zirconium titanium hydroxy ethylidene diphosphonate (ZTHEDP) of the class of tetravalent bimetallic acid (TBMA) salt was synthesized using sol-gel route. ZTHEDP was characterized for elemental analysis (zirconium, titanium and phosphorus by ICP-AES and carbon and hydrogen by CHN analyzer), spectral analysis (FTIR), thermal analysis (TGA), X-ray diffraction studies and SEM. Chemical resistivity of this material was assessed in various media-acids, bases and organic solvents. The protons present in the structural hydroxyl groups in ZTHEDP indicate good potential to exhibit solid state proton conduction. The proton transport property of ZTHEDP was explored by measuring specific conductance at different temperatures in the range of 303–423 K at 10 K intervals, using Solartron Impedance Analyzer (SI 1260) over a frequency range 1 Hz-32 MHz at a signal level below 1 V. Zirconium hydroxy ethylidene diphosphonate (ZrHEDP) and titanium hydroxy ethylidene diphosphonate (TiHEDP) were also synthesized under identical conditions, characterized and their proton transport properties investigated for comparative studies. It is observed that, in all cases, conductivity decreases with increasing temperature. Conductivity performance of ZTHEDP, ZrHEDP and TiHEDP is discussed based on conductivity data and activation energy. It is observed that, ZTHEDP exhibits enhanced conductance and the mechanism of transportation is proposed to be Grotthuss type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号