首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   5篇
物理学   2篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The delafossite CuAlO2 single crystal, prepared by the flux method, is a low mobility p-type semiconductor with a hole mobility of 1.2 × 10−5 cm−2 V−1 s−1. The chronoamperometry showed an electrochemical O2− insertion with a diffusion coefficient D 303K of 3.3 × 10−18 cm2 s−1. The thermal variation of D in the range 293–353 K gave an enthalpy of diffusion (ΔH) of 44.7 kJ mol−1. CuAlO2 is photoactive, and the Mott–Schottky plot indicates a flat band potential of +0.42 V vs saturated calomel electrode and a holes density (N A) of 1016 cm−3. The photocurrent spectra have been analyzed by using the Gartner model from which the absorption coefficients and diffusion lengths were determined. An optical transition at 1.66 eV, indirectly allowed, has been obtained. The spectral photoresponse provides a high absorption at 480 nm. The low quantum yield (η) is attributed to a small depletion length (440 nm) and a hole diffusion width (271 nm) compared to a very large penetration depth (12 μm).  相似文献   
2.
Journal of Sol-Gel Science and Technology - Benzamide is successfully degraded on the novel heterosystem NiMn2O4/TiO2 under visible light. The nanosized spinel is synthesized by the sol–gel...  相似文献   
3.
CuFeO2 single crystal, synthesized by the flux method, is a narrow band gap semiconductor crystallizing in the delafossite structure with a direct optical transition of 1.63 eV. The oxide exhibits a good chemical stability; the semi-logarithmic plot gave an exchange current density of 0.60 μA cm−2 in KCl (0.5 M) electrolyte. CuFeO2 shows p-type conductivity; the origin of acceptors Cu2+ results from oxygen insertion in the layered lattice where most of excess holes are trapped in surface-polaron states. The electrochemical study is confined in the (a,b) plane and reversible oxygen intercalation is evidenced from the intensity potential characteristics. The detailed photoelectrochemical studies have been reported for the first time on the single crystal. The photocurrent is ascribed to the transfer Cu+:3d3d. The capacitance measurement (C−2–V) shows a linear behavior from which a flat band potential of +0.54 VSCE and a density N A of 1.60 × 1018 cm−3 were determined. The valence band, located at 5.33 eV below vacuum, is made up of Cu-3d orbital typical of delafossite oxides. The Nyquist plot shows a semicircle attributed to a capacitive behavior with a low density of surface states within the gap. The centre is localized below the real axis with an angle of 16.2° ascribed to a constant phase element (CPE), a single barrier of the junction CuFeO2/electrolyte and one relaxation time of the electrical equivalent circuit.
M. TrariEmail:
  相似文献   
4.
We report on the study of WO3 doped with Cu using sol-gel (CuxWO3d) and impregnation (CuxWO3i) methods. All materials are well crystallized and exhibit single phases whose crystallite size ranges from 17 to 100 nm depending on Cu amount and the preparation technique. The conductivity dependence on temperature demonstrates semiconductor behavior and follows the Arrhenius model, with activation energies, Eσ, commonly in the range 0.4-0.6 eV. Moreover, the thermopower study shows that CuxWO3d is mainly of p-type conductivity, whereas CuxWO3i is n-type. The mechanism of conduction is attributed to a small polaron hopping. The doping process is found to decrease the interband transition down to 520 nm depending on the preparation conditions. The photoelectrochemical characterization confirms the conductivity type and demonstrates that the photocurrent Jph increases with Cu-doping. Taking into consideration the activation energy, the flat band potential and the band gap energy, the band positions of each material are proposed according to the preparation method and Cu amount.  相似文献   
5.
The compounds NxTiO2(x=0, 0.05, 0.1, 0.2) with the anatase structure have been synthesized by Sol–Gel method using Tri-ethyl Amine as nitrogen source and their optical, electrical and electrochemical properties are investigated. The electrical conductivity and thermoelectric power are measured in the temperature rang 300–600 K. The samples exhibit p-type behavior in contrast to TiO2. The doped-samples exhibit two optical transitions (2.35≤Eh−Vis(eV)≤2.55; 1.97≤El−Vis (eV)≤2.06) directly allowed in the visible region, while only one transition is observed in UV region (EUV∼3.00 eV). Pure TiO2 shows direct band gap transition of 3.17 eV. The results confirm experimentally the calculations of Di. Valentin et al. [42]. The transitions Eh−Vis and El−Vis are attributed respectively to the promotion of electrons from the localized N 2p and π? N–O bond to the conduction band. In all cases, EUV is associated to the forbidden band energy. Though that the conductivity is generally improved by doping process, only N0.05TiO2 and N0.1TiO2 shows an enhanced mobility. The mechanism of conduction takes place by small polaron hopping. The band edge positions of NxTiO2 (x=0, 0.05, 0.1, 0.2) at room temperature is predicted from the obtained physical properties. This study proves experimentally the principal role of nitrogen in doping process and permits the electronic states localization associated with N-impurities in TiO2 anatase.  相似文献   
6.
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号