首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
化学   24篇
物理学   16篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1995年   1篇
  1983年   1篇
  1908年   2篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
The cocrystal of 1,2-bis(diphenylphosphinoyl)ethane (DPPEO) with phenol (1:1) were studied theoretically with AM1, PM3, MNDO and MINDO/3 semi-empirical methods to elucidate its structure. The bond lengths and angles from theoretical studies of molecule DPPEO/phenol (1:1) were found to be as expected. Theoretical results, concerning with intermolecular van der Waals forces in cocrystal, were compared with the previously obtained experimental data and AM1 results were found to be the best fit for bond lengths and angles of DPPEO/phenol.  相似文献   
2.
3.
We report synthesis of six new bis-nicotinamide metal(II) dihalide complexes [M(nia)(2)Cl(2); M = Mn, Co; nia:nicotinamide, M(nia)(2)Br(2); M = Mn, Hg; M(nia)(2)I(2); M = Cd, Cu], and their characterization by combining infrared spectroscopy with density functional theory (DFT) calculations. Infrared spectra indicate that ring-nitrogen is the active donor cite, and the atomic structure of the complexes is determined to be polymeric octahedral or distorted polymeric octahedral. Spin polarized electronic ground state is obtained for Mn, Co, and Cu halide complexes. The colors of the complexes also support the conclusion of octahedral coordination around the metal atoms, in agreement with DFT results.  相似文献   
4.
We investigate the equilibrium geometry and electronic structure of Mo12S9I9 nanowires using ab initio density functional calculations. The skeleton of these unusually stable nanowires consists of rigid, functionalized Mo octahedra, connected by flexible, bistable sulfur bridges. This structural flexibility translates into a capability to stretch up to approximately 20% at almost no energy cost. The nanowires change from conductors to narrow-gap magnetic semiconductors in one of their structural isomers.  相似文献   
5.
A carbon paste electrode modified with 2‐aminothiazole functionalized poly(glycidylmethacrylate‐methylmethacrylate‐divinylbenzene) microspheres was used for trace determination of mercury, copper and lead ions. After the open‐circuit accumulation of the heavy metal ions onto the electrode, the sensitive anodic stripping peaks were obtained by square wave anodic stripping voltammetry (SWASV)). Many parameters such as the composition of the paste, pH, preconcentration time, effective potential scan rate and stirring rate influence the response of the measurement. The procedures were optimized for most sensitive and reliable determinations of the desired species. For a 10‐min preconcentration time in synthetic solutions at optimum instrumental and experimental conditions, the detection limit (LOD) was 12.3, 2.8 and 4.5 μg L?1 for mercury, copper and lead, respectively. The limits of detection may be enhanced by increasing the preconcentration time. For example, LOD of mercury and copper was 4.9 and 1.0 μg L?1 for fifteen minutes preconcentration time. The sensitivity may also considered to be increased by using a more suitable electrode composition targeting the more conductive electrode with lesser amount of modified polymer for sub‐μg L?1 levels of heavy metal ions. The optimized method was successfully applied to the determination of copper in tap water and waste water samples by means of standard addition procedure. The copper content found was comparable with the certified concentration of the waste water sample. The calibration plots for mercury and lead spiked real samples were also drawn.  相似文献   
6.
Chemical modification by SOCl2 of an entangled network of purified single-wall carbon nanotubes, also known as 'bucky paper', is reported to profoundly change the electrical and mechanical properties of this system. Four-probe measurements indicate a conductivity increase by up to a factor of 5 at room temperature and an even more pronounced increase at lower temperatures. This chemical modification also improves the mechanical properties of SWNT networks. Whereas the pristine sample shows an overall semiconducting character, the modified material behaves as a metal. The effect of SOCl2 is studied in terms of chemical doping of the nanotube network. We identified the microscopic origin of these changes using SEM, XPS, NEXAFS, EDX, and Raman spectroscopy measurements and ab initio calculations. We interpret the SOCl2-induced conductivity increase by p-type doping of the pristine material. This conclusion is reached by electronic structure calculations, which indicate a Fermi level shift into the valence band, and is consistent with the temperature dependence of the thermopower.  相似文献   
7.
Unusually high thermal conductivity of carbon nanotubes   总被引:6,自引:0,他引:6  
Combining equilibrium and nonequilibrium molecular dynamics simulations with accurate carbon potentials, we determine the thermal conductivity lambda of carbon nanotubes and its dependence on temperature. Our results suggest an unusually high value, lambda approximately 6600 W/m K, for an isolated (10,10) nanotube at room temperature, comparable to the thermal conductivity of a hypothetical isolated graphene monolayer or diamond. Our results suggest that these high values of lambda are associated with the large phonon mean free paths in these systems; substantially lower values are predicted and observed for the basal plane of bulk graphite.  相似文献   
8.
The electronic absorption spectra of four azo dyes with different substituents (such as Cl, I, OH) are determined at room temperature in twenty-one solvents with different polarities. The electronic transitions of azo dyes are interpreted. Linear solvation energy relationships have been investigated for solvatochromic behaviors and solute-solvent interactions of azo dyes. Linear solvation energy relationships were performed by multiple linear regression analysis using dielectric function, refractive index function and Kamlet-Taft parameters. We have observed that the hydrogen bonding acceptor ability and the induction-dispersive forces of solvent molecules have caused the bathochromic shift in absorption maxima of azo dyes.  相似文献   
9.
A new Schiff base compound, 3-(5-bromo-2-hydroxybenzylideneamino)phenol (abbreviated as BHAP) was synthesized and characterized by 1H- and 13C- nuclear magnetic resonance and infrared spectroscopies. DFT/B3LYP/6-311++G(d,p) calculations were undertaken in order to explore the conformational space of both the E- and Z- geometrical isomers of the enol-imine and keto-amine tautomers of the compound. Optimized geometries and relative energies were obtained, and it was shown that the most stable species is the E-enol-imine form, which may exist in four low-energy intramolecularly hydrogen-bonded forms (I, II, V, and VI) that are almost isoenergetic. These conformers were concluded to exist in the gas phase equilibrium with nearly equal populations. On the other hand, the infrared spectra of the compound isolated in a cryogenic argon matrix (10 K) are compatible with the presence in the matrix of only two of these conformers (conformers II and V), while conformers I and VI convert to these ones by quantum mechanical tunneling through the barrier associated with the rotation of the OH phenolic group around the C–O bond. The matrix isolation infrared spectrum was then assigned and interpreted with help of the DFT(B3LYP)/6-311++G(d,p) calculated infrared spectra for conformers II and V. In addition, natural bond orbital (NBO) analysis was performed on the most stable conformer of the experimentally relevant isomeric form (E-enol-imino conformer V) to shed light on details of its electronic structure. This investigation stresses the fundamental structural relevance of the O–H···N intramolecular H-bond in o-hydroxyaryl Schiff base compounds.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号