首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   3篇
  国内免费   1篇
化学   20篇
物理学   3篇
  2020年   1篇
  2019年   2篇
  2016年   6篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2006年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
Microchimica Acta - The authors describe an aptasensor for tetracycline (TET) based on the use of a glassy carbon electrode (GCE) modified with graphene oxide nanosheets. The latter were placed on...  相似文献   
2.
Molecular Diversity - As one of the hot topics in the epigenetic studies, histone deacetylases inhibitors (HDACIs) have been introduced to treat a variety of diseases such as cancer, immune...  相似文献   
3.
In this paper electropolymerization of a thin film of para‐phenylenediamine (PPD) is studied at glassy carbon electrode (GCE) in sulfuric acid media by cyclic voltammetry. The results showed that this polymer was conducting and had a reproducible redox couple in the potential region from 0.0 to 0.4 V in phosphate buffer solution. This modified GCE (p‐PPD‐GCE) was applied for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) using differential pulse voltammetry (DPV). The p‐PPD‐GCE in 0.1 M phosphate buffer solution (pH 5.0) separated the DPV signals of AA, DA and UA with sufficient potential differences between AA–DA and DA–UA and also enhanced their oxidation peak currents. The oxidation currents were increased from 2.0 to 2000.0 µM for AA, 10.0 to 1250.0 µM for DA and 50.0 to 1600.0 µM for UA. The detection limits were evaluated as 0.4, 1.0 and 2.5 µM for AA, DA and UA, respectively (S/N=3).  相似文献   
4.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   
5.
6.
In this study, ruthenium oxide nanoparticles were electrochemically deposited on the surface of a glassy carbon electrode (RuON-GCE). Electrochemical studies indicate that a modified electrode (RuON-GCE) plays the role of an excellent bifunctional electrocatalyst for the oxidation of adrenaline (AD) and uric acid (UA) in two different potentials. The charge transfer coefficient (α) and the heterogeneous charge transfer rate constant (k′) between the analytes and the electrodeposited nanoparticles were determined using cyclic voltammetry experiments. Through a different pulse voltammetric (DPV) method, the plot of the electrocatalytic current versus AD and UA concentrations emerged to be constituted of two linear segments with different sensitivities. Furthermore, the detection limits of AD and UA were estimated. In DPV, RuON-GCE could separate the oxidation peak potentials of AD, UA, and cysteine (Cys) present in the same solution though, at the bare GCE, the peak potentials were indistinguishable. Finally, the modified electrode activity was studied for the electrocatalytic determination of AD in an injection solution and UA in a human urine sample. The results were found satisfactory.  相似文献   
7.
In this work, a simple and novel electrochemical biosensor based on a glassy carbon electrode (GCE) modified with graphene oxide nanosheets (GO) was developed for detection of DNA sequences. The morphology of prepared nanoplatform was investigated by scanning electron microscopy, infrared (FTIR) and UV/Vis absorption spectra. The fabrication processes of electrochemical biosensor were characterized with cyclic voltammetry and electrochemical impedance spectroscopy (EIS) in an aqueous solution. The optimization of experimental conditions such as immobilization of the probe BRCA1 and its hybridization with the complementary DNA was performed. Due to unique properties of graphene oxide nanosheets such as large surface area and high conductivity, a wide liner range of 1.0 × 10?17–1.0 × 10?9 M and detection limit of 3.3 × 10?18 M were obtained for detection of BRCA1 5382 mutation by EIS technique. Under the optimum conditions, the proposed biosensor (ssDNA/GO/GCE) revealed suitable selectivity for discriminating the complementary sequences from non-complementary sequences, so it can be applicable for detection of breast cancer.  相似文献   
8.
A PVC membrane electrode based on copper(Ⅱ) bis(N-2-bromophenylsalicyldenaminato) as ionophor was prepared.The ion selective electrode was tested by inorganic anions and showed a good selectivity for iodide ion.This sensor exhibited Nernstian behavior with a slope of—57.8 mV per decade at 25℃.The proposed electrode showed a linear range from 1.0×105 to 1.0×10-1 mol/L with a detection limit of 5.0×10-6 mol/L.The electrode response was independent of pH in the range of 3.0- 10.0.The proposed sensor was applied to determine the iodide in water and antiseptic samples.  相似文献   
9.
The acidity constants of 4-(2-thiazolylazo)-resorcinol (TAR) were determined by the principal component-wavelet neural network (WNN). Biprotic acid mass balance equations, the distribution functions and the corresponding spectral profiles which were generated by a Gaussian model, have been considered to simulate all required absorbance-pH data. The simulated absorption-pH data matrix was used as training set whereas the TAR absorption-pH data was used as the test set of WNN model. The obtained acidity constants were in good agreement with the reported values of acidity constants in the literature and with those calculated by DATAN software. Artificial neural network (ANN) model has been also employed in this study and the results of WNN were compared with those obtained by ANN. It was found that WNN gives faster convergence and slightly better accuracy.  相似文献   
10.
A novel carbon paste electrode modified with nanosized mesoporous MCM-41 was prepared, and used as an electrochemical sensor to study the electro oxidation of levodopa (LD), carbidopa (CD) and their mixtures. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of LD and CD has been explored at the modified electrode. The electrochemical sensor displayed a good resolving function for the overlapping voltammetric responses of LD and CD into two separate peaks with a potential difference of 370 mV. DPV peak currents of LD increased linearly with concentration over the 0.13 μM to 1250.00 μM range and exhibited a detection limit of 0.072 μM. Also, the proposed electrochemical sensor was used for the determination of LD and CD in some real samples, using the standard addition method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号