首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
化学   2篇
  2019年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The aim of the present study was to improve the compatibility in blends of natural rubber (NR) and polyamide 12 (PA12) by grafting NR with hydrophilic monomer, diacetone acrylamide (DAAM), via seeded emulsion polymerization. The increase in polarity of NR after grafting modification was confirmed by a considerable increase in the polar component of its surface energy. Blends of graft copolymers of NR and poly(diacetone acrylamide) prepared using 10 wt% of DAAM (NR‐g‐PDAAM10) and PA12 were prepared at a 60/40 blend ratio (wt%) using simple blend and dynamic vulcanization techniques. The mechanical and rheological properties of the resulting blends were subsequently investigated and compared with those of the corresponding blends based on unmodified NR. The results show that dynamic vulcanization led to a significant increase in both mechanical and rheological properties of the blends. It was also observed that the dynamically cured NR‐g‐PDAAM10/PA12 blend had smaller particle size of vulcanized rubber dispersed in the PA12 matrix than observed for the dynamically cured NR/PA12 blend. This is due to the compatibilizing effect of DAAM groups present in NR‐g‐PDAAM10 molecule, which decreases the interfacial tension between the two polymeric phases. Therefore, it can be stated that the interfacial adhesion between NR and PA12 was improved by the presence of DAAM groups in NR molecule. This was reflected in the higher tensile properties observed in the dynamically cured NR‐g‐PDAAM10/PA12 blend. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
2.
The study described in this paper first demonstrates that a newly modified form of natural rubber, namely graft copolymers of natural rubber with poly (acetoacetoxyethyl methacrylate), NR‐g‐PAAEM, is able to undergo a cross‐linking reaction at room temperature by reaction with a water dispersible polyisocyanate based on hexamethylene diisocyanate (poly‐HDI). Attenuated total reflectance Fourier transform infrared (ATR‐FTIR) analysis indicated that amide groups were formed by the reaction of the acetoacetyl groups (AcAc) present in the grafted poly (acetoacetoxyethyl methacrylate) (PAAEM) chains with the poly‐HDI. This observation was accompanied by a noticeable increase in the tensile strength of the NR‐g‐PAAEM latex films when adding poly‐HDI to the latex prior to film formation. DMTA analyses also revealed a shift in the tan δ peaks, corresponding to the transitions of both NR‐g‐PAAEM and free PAAEM phases, to higher temperatures. These results provide firm evidence of cross‐linking between NR‐g‐PAAEM chains by reaction with poly‐HDI during film formation under ambient conditions. Adhesives for bonding wood to wood based on the NR‐g‐PAAEM latex were then prepared, using poly‐HDI as the cross‐linker. The lap shear strength of the resulting adhesives exhibited a maximum value of 2657 KPa when a poly‐HDI:AAEM molar ratio of 3:1 was employed. It was also observed that the adhesive attained about approximately 89% of the highest lap shear strength after it was allowed to set at 30°C for 24 hours. Hence, the use of poly‐HDI in cross‐linking NR particles bearing grafted PAAEM offers great potential for developing latex adhesives and coatings capable of curing under ambient conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号