首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   6篇
  国内免费   2篇
化学   249篇
晶体学   2篇
力学   4篇
数学   51篇
物理学   40篇
  2023年   2篇
  2022年   5篇
  2021年   4篇
  2020年   7篇
  2019年   7篇
  2018年   7篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   16篇
  2012年   9篇
  2011年   10篇
  2010年   12篇
  2009年   6篇
  2008年   17篇
  2007年   25篇
  2006年   22篇
  2005年   11篇
  2004年   27篇
  2003年   15篇
  2002年   12篇
  2001年   11篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1996年   3篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   6篇
  1982年   5篇
  1980年   5篇
  1979年   2篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
  1971年   2篇
  1904年   2篇
  1879年   1篇
  1870年   1篇
  1868年   2篇
  1863年   2篇
  1862年   4篇
排序方式: 共有346条查询结果,搜索用时 15 毫秒
1.
The solid solubility in the systems Y2O2S---La2O2S, Y2O2S---Gd2O2S, and Gd2O2S---La2O2S has been investigated. Solid solutions of all compounds, throughout the whole composition range, were readily obtained, using coprecipitated oxalates and a polysulfide flux.  相似文献   
2.
3.
The visual pigment of the Tokay gecko (Gekko gekko) with its in situ absorption maximum at 521 nm has its spectral position at 500 to 505 nm when chloride-deficient digitonin is used for the extraction. In this case the addition of chloride or bromide to the extract restores the maximum to 521 nm. This property, characteristic of gecko pigments in general, does not occur with any of the rhodopsins that have been tested. Simple salts of cyanide, a pseudohalogenoid with an ionic radius close to those of chloride and bromide and/or its hydrolysis product attacks both this gecko pigment and rhodopsins in the dark. This is seen as a slow thermal loss of photopigment if (sodium) cyanide is present at concentrations above 40 mM for the gecko pigment and 150 mM for the rhodopsins of the midshipman (Porichthys notatus) and of the frog (Rana pipiens). In all cases the loss of the photopigment is accompanied by the appearance of a spectral product with maximum absorption at about 340 nm. Cyanide addition has no effect on the photosensitivity of the native pigments and neither does it alter, as do chloride, bromide and other anions, the spectral absorbance curve. The spectral product at 340 nm also appears when the visual pigments are photolyzed in the presence of cyanide salts below the threshold concentrations given above. Incubation of digitonin-solubilized all-trans-retinal with (sodium) cyanide leads to a reaction product with absorption spectrum similar to that obtained with visual pigments under comparable conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
4.
5.
Discotic molecules have planar, disklike polyaromatic cores that can self-assemble into "molecular wires". Highly anisotropic charge transfer along the wires arises when there is sufficient intermolecular overlap of the pi-orbitals of the molecular cores. Discotic materials can be applied in molecular electronics, field-effect transistors, and-recently with record quantum efficiencies-photovoltaics (Schmidt-Mende, L.; Fechtenk?tter, A.; Müllen, K.; Moons, E.; Frien, R. H.; MacKenzie, J. D. Science 2001, 293, 1119). A combination of quasielastic neutron scattering (QENS) measurements with molecular dynamics simulations on the discotic molecule hexakis(n-hexyloxy)triphenylene (HAT6) shows that the dynamics of the cores and tails of discotic molecules are strongly correlated. Core and tail dynamics are not separated, the system being characterized by overall in-plane motion, on a time scale of 0.2 ps, and softer out-of-plane motions at 7 ps. Because charge transfer between the molecules is on similar time scales, these motions are relevant for the conducting properties of the materials. Both types of motion are dominated by van der Waals interactions. Small-amplitude in-plane motions in which the disks move over each other are almost entirely determined by tail/tail interactions, these also playing an important role in the out-of-plane motion. The QENS measurements reveal that these motions are little changed by passing from the columnar phase to the isotropic liquid phase, just above the clearing temperature. The model of four HAT6 molecules in a column reproduces the measured QENS spectrum of the liquid phase, suggesting that correlations persist within the liquid phase over about this number of disks.  相似文献   
6.
Recently developed carbon transverse relaxation dispersion experiments (Skrynnikov, N. R.; et al. J. Am. Chem. Soc. 2001, 123, 4556-4566) were applied to the study of millisecond to microsecond time scale motions in a cavity mutant of T4 lysozyme (L99A) using methyl groups as probes of dynamics. Protein expressed in E. coli cells with (13)CH(3)-pyruvate as the sole carbon source contained high levels of (13)C enrichment at a total of 80 Val gamma, Leu delta, Ile gamma (2), Ala beta, and Met epsilon methyl positions with little extraneous incorporation. Data for 72 methyl groups were available for analysis. Dispersion profiles with large amplitudes were measured for many of these residues and were well fit to a two-state exchange model. The interconversion rates and populations of the states, obtained from fitting relaxation dispersion profiles of each individual probe, were remarkably homogeneous and data for nearly all methyl groups in the protein could be collectively fit to a single cooperative conformational transition. The present study demonstrates the general applicability of methyl relaxation dispersion measurements for the investigation of millisecond time scale protein motions at a large number of side-chain positions. Potential artifacts associated with the experiments are described and methods to minimize their effects presented. These experiments should be particularly well suited for probing dynamics in high molecular weight systems due to the favorable NMR spectroscopic properties of methyl groups.  相似文献   
7.
A copper-catalyzed new C-N bond formation involving a sp-hybridized carbon is described here leading to a facile entry for syntheses of chiral ynamides. This direct N-alkynylation of amides should have a significant impact on the future development of synthetic methodologies employing ynamides.  相似文献   
8.
The kinetics of the thermal conversion reaction of poly-(1,3-phenyl-1,4-phenyl)-hydrazide into poly-(1,3-phenyl-1,4-phenyl)-1,3,4-oxadiazole have been studied with isothermal thermogravimetry in continuation of a study with nonisothermal thermogravimetry described in a previous paper. Although the isothermal measurements are much more time-consuming, they provide some new information and insight about the cyclo dehydration reaction of the polyhydrazide. The physical state of the sample, rubbery or glassy, seems to influence the kinetics considerably. The kinetic parameters determined with the isothermal method for the polymer in its glassy state agree well with the parameters derived from the previously reported nonisothermal measurements, while the kinetic parameters for the expected rubbery state differ considerably. The morphological state or the history of the polymer has also a considerable influence on the kinetics of the isothermal conversion process. The powder form of the polymer has a much lower isothermal conversion rate than the film form.  相似文献   
9.
A molecular capsule based on ionic interactions between two oppositely charged calix[4]arenes, 1 and 2, was assembled both in solution and on a surface. In solution, the formation of the equimolar assembly 1.2 was studied by (1)H NMR, ESI-MS, and isothermal titration calorimetry, giving an association constant (K(a)) of 7.5 x 10(5) M(-1). A beta-cyclodextrin self-assembled monolayer (beta-CD SAM) on gold was used as a molecular printboard to anchor the tetraguanidinium calix[4]arene (2). The binding of tetrasulfonate calix[4]arene 1 was monitored by surface plasmon resonance spectroscopy. Rinsing of the surface with a high ionic strength aqueous solution allows the removal of the tetrasulfonate calix[4]arene (1), while by rinsing with 2-propanol it is possible to achieve the complete desorption of the tetraguanidinium calix[4]arene (2) from the beta-CD SAM. The K(a) for the capsule formation on a surface is 3.5 x 10(6) M(-1), thus comparing well with the K(a) determined in solution.  相似文献   
10.
The gas-phase O-H bond dissociation enthalpy, BDE, in phenol provides an essential benchmark for calibrating the O-H BDEs of other phenols, data which aids our understanding of the reactivities of phenols, such as their relevant antioxidant activities. In a recent review, the O-H BDE for phenol was presented as 90 +/- 3 kcal mol(-1) (Acc. Chem. Res. 2003, 36, 255-263). Due to the large margin of error, such a parameter cannot be used for dynamic interpretations nor can it be used as an anchor point in the development of more advanced computational models. We have reevaluated the existing experimental gas-phase data (thermolyses and ion chemistry). The large errors and variations in thermodynamic parameters associated with the gas-phase ion chemistry methods produce inconsistent results, but the thermolytic data has afforded a value of 87.0 +/- 0.5 kcal mol(-1). Next, the effect of solvent has been carefully scrutinized in four liquid-phase methods for measuring the O-H BDE in phenol: photoacoustic calorimetry, one-electron potential measurements, an electrochemical cycle, and radical equilibrium electron paramagnetic resonance (REqEPR). The enthalpic effect due to solvation, by, e.g., water, could be rigorously accounted for by means of an empirical model and the difference in hydrogen bond interactions of the solvent with phenol and the phenoxyl radical. For the REqEPR method, a second correction is required since the calibration standard, the O-H BDE in 2,4,6-tri-tert-butylphenol, had to be revised. From the gas-phase thermolysis data and three liquid-phase techniques (excluding the electrochemical cycle method), the present analysis yields a gas-phase BDE of 86.7 +/- 0.7 kcal mol(-1). The O-H BDE was also estimated by state-of-the-art computational approaches (G3, CBS-APNO, and CBS-QB3) providing a range from 86.4 to 87.7 kcal mol(-1). We therefore recommend that in the future, and until further refinement is possible, the gas-phase O-H BDE in phenol should be presented as 86.7 +/- 0.7 kcal mol(-1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号