首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   5篇
力学   2篇
  2012年   2篇
  2011年   2篇
  2007年   1篇
  2003年   1篇
  1995年   1篇
排序方式: 共有7条查询结果,搜索用时 29 毫秒
1
1.
Calculations are made of the thermal energy exchanges accompanying the anabolism of Saccharomyces cerevisiae of four substrates using the equations and . Contrary to a previous postulate cited in the Discussion, the free-energy changes accompanying anabolism are not zero, but can be either positive or negative. However, their magnitude with either sign is small compared to that of catabolism of the same substrates, so that even with free energy changes that are negative it is unlikely anabolism can be considered a spontaneous process.  相似文献   
2.
Calculations are made using the equations Δr G = Δr H ? TΔr S and Δr X = Δr H ? Δr Q where Δr X represents the free energy change when the exchange of absorbed thermal energy with the environment is represented by Δr Q. The symbol Q has traditionally represented absorbed heat. However, here it is used specifically to represent the enthalpy listed in tabulations of thermodynamic properties as (H T  ? H 0) at T = 298.15 K, the reason being that for a given substance TS equals 2.0 Q for solid substances, with the difference being greater for liquids, and especially gases. Since Δr H can be measured, and is tangibly the same no matter what thermodynamics are used to describe a reaction equation, a change in the absorbed heat of a biochemical growth process system as represented by either Δr Q or TΔr S would be expected to result in a different calculated value for the free energy change. Calculations of changes in thermodynamic properties are made which accompany anabolism; the formation of anabolic, organic by-products; catabolism; metabolism; and their respective non-conservative reactions; for the growth of Saccharomyces cerevisiae using four growth process systems. The result is that there is only about a 1% difference in the average quantity of free energy conserved during growth using either Eq. 1 or 2. This is because although values of TΔr S and Δr Q can be markedly different when compared to one another, these differences are small when compared to the value for Δr G or Δr X.  相似文献   
3.
Calculations are made using the equations Δr G = Δr H − TΔr S and Δr X = Δr H − Δr Q where Δr X represents the free energy change when the exchange of absorbed thermal energy with the environment is represented by Δr Q. The symbol Q has traditionally represented absorbed heat. However, here it is used specifically to represent the enthalpy listed in tabulations of thermodynamic properties as (H T  − H 0) at T = 298.15 K, the reason being that for a given substance TS equals 2.0 Q for solid substances, with the difference being greater for liquids, and especially gases. Since Δr H can be measured, and is tangibly the same no matter what thermodynamics are used to describe a reaction equation, a change in the absorbed heat of a biochemical growth process system as represented by either Δr Q or TΔr S would be expected to result in a different calculated value for the free energy change. Calculations of changes in thermodynamic properties are made which accompany anabolism; the formation of anabolic, organic by-products; catabolism; metabolism; and their respective non-conservative reactions; for the growth of Saccharomyces cerevisiae using four growth process systems. The result is that there is only about a 1% difference in the average quantity of free energy conserved during growth using either Eq. 1 or 2. This is because although values of TΔr S and Δr Q can be markedly different when compared to one another, these differences are small when compared to the value for Δr G or Δr X.  相似文献   
4.
Slamming, the impact between a marine craft’s hull and the water surface is a critical load case for structural design of marine vessels. The importance of hull slamming has led to a significant body of work to understand, predict and model these impacts. There is however, a lack of experimental data for validation, particularly for deformable panels and sandwich structures. This paper describes a high-velocity panel slamming test system that enables the generation of comprehensive and reliable experimental data on slamming impacts for both rigid and flexible panel structures. The pressure magnitudes, time-histories and spatial distributions resulting from testing of a nominally rigid panel have been compared with previous analytical, semi-empirical and experimental studies. Slamming impacts of a deformable sandwich panel are shown to cause different pressures to those from a rigid panel impact, resulting in increased transverse shear loading at the panel edge.  相似文献   
5.
The advantages and disadvantages of direct and indirect calorimetry   总被引:2,自引:0,他引:2  
Kleiber's definitions of what constitutes direct and indirect calorimetry are accepted as the beginning of a commentary on the advantages and disadvantages of direct and indirect calorimetry in which calorimetry is divided into a number of categories based on the kind of calorimetric measurement. For non-reaction calorimetry such as entropy determinations and differential scanning calorimetry, the only means of measurement is by direct calorimetry. For reaction calorimetry, a preference of direct over indirect calorimetry depends on the accuracy needed and the ability of the experimenter to define the system. The data necessary to correct the observed heat loss in direct calorimetry are often all that are needed to make an indirect calculation of the true heat loss. In general, because they are convenient and inexpensive to use, indirect calorimetric methods are preferable to direct methods. However, when possible, one method can be used to verify the results of the other.  相似文献   
6.
As represented by equations in which there is a term representing the biomass, the thermodynamics of biological growth processes is difficult to study without knowing the thermodynamic properties of cellular structural fabric. Measurement of the heat capacity data required to determine the standard entropy, So 298,15 or the standard absorbed heat, (H o 298,15 -ΔHo 0 =Θo 298,15 of biomass requires a low-temperature calorimter, and these are not present in most laboratories. Based on a previously described method for entropy, two equations are developed that enable values of the absorbed heat (Θo 298,15) and the absorbed heat of formation, (Δ f Θo 298,15) for biomass to be calculated empirically which are accurate to within 1% with respect to the biomass substances tested. These equations depend on a previous knowledge of the atomic composition or the unit-carbon formulas of macromolecules or structural cellular fabric. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
There exist several high-order sandwich panel theories, most notably, the first to be introduced high-order sandwich panel theory (HSAPT) assumes a constant shear stress in the core. Recently, the extended high-order sandwich panel theory (EHSAPT) was introduced, its novelty being that it allows for three generalized coordinates in the core (the axial and transverse displacements at the centroid of the core, and the rotation at the centroid of the core) instead of just one (shear stress in the core) of the earlier theory. In this paper, the EHSAPT formulation for predicting the critical wrinkling load is presented for a simply supported sandwich of general asymmetric construction. The cases of (i) applying the loading just on the face sheets with a linear core assumption and (ii) applying uniform strain loading throughout the thickness of the panel and a nonlinear core assumption are examined. The results are compared with a benchmark elasticity solution. In addition, edgewise compression experiments were conducted on glass face/Nomex honeycomb core and the ensuing wrinkling point is compared with the theoretical predictions. A comparison is also made with earlier edgewise compression experiments on aluminum face/granulated-cork core reported in literature. Other wrinkling formulas that are included in the comparison are: Hoff–Mautner and the HSAPT.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号