首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   4篇
综合类   1篇
  2023年   1篇
  2019年   2篇
  2018年   1篇
  2014年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
目前电子数据的安全存储主要依赖加密技术,数据通常只用一个密钥进行加密,并且密钥的管理过于集中,无法应对内部人员的密钥泄漏问题。设计了一种数据存储系统模型,包括访问控制子模型,用于数据的安全存储。一份完整的数据被分割成数份后加密存储在多个存储服务器上,一个或多个服务受到攻击时,攻击者无法从这些数据分片还原出完整的数据明文,从而达到安全存储的目的。最后将分析该模型的安全性能以及存储效率。  相似文献   
2.
With the rapid progress achieved by all-polymer solar cells (all-PSCs), wide-bandgap copolymers have attracted intensive attention for their unique advantage of constructing complementary absorption profiles with conventional narrow-bandgap copolymers. In this work, we designed and synthesized a wide bandgap ternary copolymer PEG-2% which has the benzodithiophene-alt-difluorobenzotriazole as the backbone and the polyethylene glycol (PEG) modified side chain. The PBTA-PEG-2%:N2200 can be processed with a non-chlorinated solvent of 2-methyl-tetrahydrofuran (MeTHF) for the binary all-PSC, which exhibits a moderate photovoltaic performance. In particular, the ternary all-PSCs that consisting an additional narrow bandgap polymer donor PTB7-Th can also be processed with MeTHF, resulting in an unprecedented power conversion efficiency (PCE) of 9.27%, and a high PCE of 8.05% can be achieved with active layer thickness of 240 nm, both of which are the highest values so far reported from all-PSCs. Detailed investigations revealed that the dramatically improved device performances are attributable to the well-extended absorption band in the photoactive layer. Hence, developing novel copolymers with tailored side chains, and introducing additional polymeric components, can broaden the horizon for high-performance all-PSCs.  相似文献   
3.
Fan  Baobing  Zhang  Difei  Li  Meijing  Zhong  Wenkai  Zeng  Zhaomiyi  Ying  Lei  Huang  Fei  Cao  Yong 《中国科学:化学(英文版)》2019,62(6):746-752
To achieve high photovoltaic performance of bulk hetero-junction organic solar cells(OSCs), a range of critical factors including absorption profiles, energy level alignment, charge carrier mobility and miscibility of donor and acceptor materials should be carefully considered. For electron-donating materials, the deep highest occupied molecular orbital(HOMO) energy level that is beneficial for high open-circuit voltage is much appreciated. However, a new issue in charge transfer emerges when matching such a donor with an acceptor that has a shallower HOMO energy level. More to this point, the chemical strategies used to enhance the absorption coefficient of acceptors may lead to increased molecular crystallinity, and thus result in less controllable phase-separation of photoactive layer. Therefore, to realize balanced photovoltaic parameters, the donor-acceptor combinations should simultaneously address the absorption spectra, energy levels, and film morphologies. Here, we selected two non-fullerene acceptors, namely BTPT-4F and BTPTT-4F, to match with a wide-bandgap polymer donor P2F-EHp consisting of an imidefunctionalized benzotriazole moiety, as these materials presented complementary absorption and well-matched energy levels. By delicately optimizing the blend film morphology, we demonstrated an unprecedented power conversion efficiency of over 16% for the device based on P2F-EHp:BTPTT-4F, suggesting the great promise of materials matching toward high-performance OSCs.  相似文献   
4.
All‐polymer solar cells (all‐PSCs), with the photoactive layer exclusively composed of polymers as both donor and acceptor, have attracted growing attention due to their unique merits in optical, thermal and mechanical durability. Through the combined strategies in materials design and device engineering, recently the power conversion efficiencies of single‐junction all‐PSCs have been boosted up to 11 %. This review focuses on the recent progress of all‐PSCs comprising of wide band‐gap p‐type polymers, especially those based on the units of thieno[3,4‐c]pyrrole‐4,6(5H)‐dione], fluorinated benzotriazole, benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione, and pyrrolo[3,4‐f]benzotriazole‐5,7(6H)‐dione. Meantime, several categories of n‐type polymers used to match with these polymer donors are also reviewed. Finally, a brief summary of the strategies of molecular design and morphology optimization is given, and strategies toward further improving performance of all‐PSCs are outlined.  相似文献   
5.
Organic photovoltaics (OPV) are one of the most effective ways to harvest renewable solar energy, with the power conversion efficiency (PCE) of the devices soaring above 19 % when processed with halogenated solvents. The superior photocurrent of OPV over other emerging photovoltaics offers more opportunities to further improve the efficiency. Tailoring the absorption band of photoactive materials is an effective way to further enhance OPV photocurrent. However, the field has mostly been focusing on improving the near-infrared region photo-response, with the absorption shoulders in short-wavelength region (SWR) usually being neglected. Herein, by developing a series of non-fullerene acceptors (NFAs) with varied side-group conjugations, we observe an enhanced SWR absorption band with increased side-group conjugation length. The underpinning factors of how molecular structures and geometries improve SWR absorption are clearly elucidated through theoretical modelling and crystallography. Moreover, a clear relationship between the enhanced SWR absorption and reduced singlet-triplet energy gap is established, both of which are favorable for the OPV performance and can be tailored by rational structure design of NFAs. Finally, the rationally designed NFA, BO-TTBr, affords a decent PCE of 18.5 % when processed with a non-halogenated green solvent.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号