首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   15篇
  2011年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Insertion of CS(2) into the Ru-H bond of cis-[(dppe)(2)Ru(H)(2)] takes place to afford the hydride dithioformate complex trans-[(dppe)(2)Ru(H)(SC(S)H)]. The hydride dithioformate complex reacts under very mild conditions with MeX (X = OTf, I) to give the hydride methyldithioformate derivative trans-[(dppe)(2)Ru(H)(SC(SMe)H)][X]. Three different pathways have been found to cleave off the ester moiety from the metal complex. A method to recover the ruthenium starting material upon elimination of the methyldithioformate is presented. This is a novel case of C(1) chemistry using carbon disulfide.  相似文献   
2.
Addition of excess carbon disulfide to cis/trans-[(dppm)(2)Ru(H)(2)] results in the methanedithiolate complex [(dppm)(2)Ru(eta(2)-S(2)CH(2))] 4 via the intermediacy of cis-[(dppm)(2)Ru(H)(SC(S)H)] 2. The X-ray crystal structure of this species has been determined.  相似文献   
3.
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H(2))(L)][BF(4)](2) (dppm = Ph(2)PCH(2)PPh(2); L = P(OMe)(3), P(OEt)(3), PF(O(i)Pr)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF(4)] (L = P(OMe)(3), P(OEt)(3), P(O(i)Pr)(3)) using HBF(4).Et(2)O. The cis-[(dppm)(2)Ru(H)(L)][BF(4)] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H(2) ligand in the dihydrogen complexes is labile, and the loss of H(2) was found to be reversible. The protonation reactions of the starting hydrides with trans PMe(3) or PMe(2)Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dppm)(2)Ru(BF(4))Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], cis-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], and cis-[(dppm)(2)Ru(H)(P(O(i)Pr)(3))][BF(4)] complexes have been determined.  相似文献   
4.
Five new monocationic dihydrogen complexes of ruthenium of the type trans-[RuCl(eta(2)-H(2))(PP)(2)][BF(4)] (PP = bis-1,2(diarylphosphino)ethane, aryl = p-fluorobenzyl, 1a, benzyl, 2a, m-methylbenzyl, 3a, p-methylbenzyl, 4a, p-isopropylbenzyl, 5a) have been prepared by protonating the precursor hydride complexes trans-[RuCl(H)(PP)(2)] using HBF(4).OEt(2). The dihydrogen complexes are quite stable and have been isolated in the solid state. The intact nature of the H-H bond in these derivatives has been established from the short spin-lattice relaxation times (T1, ms) and observation of substantial H, D couplings in the HD isotopomers. The H-H bond distances (dHH, A) increase systematically from 0.97 to 1.03 A as the electron-donor ability of the substituent on the diphosphine ligand increases from the p-fluorobenzyl to the p-isopropylbenzyl moiety. The d(HH) in trans-[Ru(eta(2)-H(2))(Cl)((C(6)H(5)CH(2))(2)PCH(2)CH(2)P(CH(2)C(6)H(5))(2))(2)][BF(4)], 2a, was found to be 1.08(5) A by X-ray crystallography. In addition, two new 16-electron dicationic dihydrogen complexes of the type [Ru(eta(2)-H(2))(PP)(2)][OTf](2) (PP = (ArCH(2))(2)PCH(2)CH(2)P(CH(2)Ar)(2), Ar = m-CH(3)C(6)H(4-), 6a, p-CH(3)C(6)H(4)-, 7a) have also been prepared and characterized. These derivatives were found to possess elongated dihydrogen ligands.  相似文献   
5.
The highly electrophilic, 16-electron, coordinatively unsaturated [Ru(P(OMe)(OH)(2))(dppe)(2)][OTf](2) complex brings about the heterolytic activation of H(2)(g) and spontaneously generates HOTf. In addition, trans-[Ru(H)(P(OMe)(OH)(2))(dppe)(2)](+) and an unprecedented example of a phosphorous acid complex, [Ru(P(OH)(3))(dppe)(2)](2+), are formed. The [Ru(P(OMe)(OH)(2))(dppe)(2)][OTf](2) complex also cleaves the Si-H bond in EtMe(2)SiH in a heterolytic fashion, resulting in the trans-[Ru(H)(P(OMe)(OH)(2))(dppe)(2)](+) derivative.  相似文献   
6.
Double insertion of CS2 into two Ru-H bonds of [(dppm)2Ru(H)2] (dppm = Ph2PCH2PPh2) affords the methanedithiolate complex [(dppm)2Ru(eta2-S2CH2)]. The methanedithiolate moiety has been functionalized using 2 equiv of RX resulting in bis(alkylthio)methane derivatives [(dppm)2Ru(RSCH2SR)][X]2. The bis(alkylthio)methane complex loses the bis(alkylthio)methane moiety under very mild conditions and in turn affords the [(dppm)2RuX2] complex from which the starting dihydride [(dppm)2Ru(H)2] has been regenerated via reaction with KOH/EtOH. On the other hand, insertion of CS2 into one Ru-H bond of [(dppe)2Ru(H)2] (dppe = Ph2PCH2CH2PPh2) followed by functionalization using RX results in alkyl dithioformate complex trans-[(dppe)2Ru(H)(SC(SR)H)][X]. In this case also, the alkyl dithioformate moiety gets eliminated under very mild conditions to afford the [(dppe)2Ru(H)(X)] derivative from which the starting dihydride has been regenerated via reaction with NaBH4. The reactions presented here constitute utilization of CS2 as a C1 synthetic source for the generation of useful organic compounds.  相似文献   
7.
Insertion of CS2 into one of the Ir-H bonds of [Ir(H)5(PCy3)2] takes place to afford the dihydrido dithioformate complex cis-[Ir(H)2(eta2-S2CH)(PCy3)2] accompanied by the elimination of H2. Protonation of the dithioformate complex using HBF4.Et2O gives cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4] wherein the H atom undergoes site exchange between the dihydrogen and the hydride ligands. The dynamics was found to be so extremely rapid with respect to the NMR time scale that the barrier to exchange could not be measured. Partial deuteration of the hydride ligands resulted in a J(H,D) of 6.5 and 7.7 Hz for the H2D and the HD2 isotopomers of cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4], respectively. The H-H distance (d(HH)) for this complex has been calculated to be 1.05 A, which can be categorized under the class of elongated dihydrogen complexes. The cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4] complex undergoes substitution of the bound H2 moiety with CH(3)CN and CO resulting in new hydride derivatives, cis-[Ir(H)(L)(eta2-S2CH)(PCy3)2][BF4] (L = CH3CN, CO). Reaction of cis-[Ir(H)2(eta2-S2CH)(PCy3)2] with electrophilic reagents such as MeOTf and Me3SiOTf afforded a new hydride aquo complex cis-[Ir(H)(H2O)(eta2-S2CH)(PCy3)2][OTf] via the elimination of CH4 and Me3SiH, respectively, followed by the binding of a water molecule (present in trace quantities in the solvent) to the iridium center. The X-ray crystal structures of cis-[Ir(H)2(eta2-S2CH)(PCy3)2] and cis-[Ir(H)(H2O)(eta2-S2CH)(PCy3)2][OTf] have been determined.  相似文献   
8.
Ammonia-borane (AB) hydrolysis for the generation of hydrogen has been studied using first row transition metal ions, such as Co (2+), Ni (2+), and Cu (2+). In the cases of cobalt- and nickel-assisted AB hydrolysis, amorphous powders are formed that are highly catalytically active for hydrogen generation. Annealing of these amorphous powders followed by powder X-ray diffraction measurements revealed the presence of Co(0) and Co 2B and Ni(0) and Ni 3B, respectively. On the other hand, copper-assisted AB hydrolysis was catalyzed by in situ generated H (+) and Cu(0) nanoparticles. The reduction ability of AB for the realization of coinage metal nanoparticles from the respective metal salts has also been studied. These reduction reactions were found to be facile, affording colloids of pure metal nanoparticles. Nanoparticles prepared in this manner were characterized by UV-visible spectroscopy and high-resolution electron microscopy.  相似文献   
9.
10.
    
Three new monocationic molecular hydrogen complexes of ruthenium of the typetrans-[RuCl(η2-H2)(PP)2][BF4] (PP = bis-l,2(diarylphosphino)ethane, aryl = p-fluorobenzyl, benzyl,p-methyl-benzyl) have been prepared by protonating the precursor hydride complexes trans-[RuCl(H)(PP)2] using HBF4.Et20. These three dihydrogen complexes are quite stable and have been isolated in the solid state. The intact nature of the H-H bond in these derivatives has been established from the short spin-lattice relaxation times(T 1, ms) and the observation of substantial H, D couplings in the HD isotopomers. The H-H bond distances(d HH, ?) increase from 0.97 to 1.01 ? as the electron donor ability of the diphosphine ligand increases from the p-fluorobenzyl to the benzyl to the p-methylbenzyl moiety. These dihydrogen complexes constitute the initial stages of elongation of the H-H bond enroute to its cleavage along the reaction coordinate for the oxidative addition of H2 to a metal centre.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号