首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   2篇
力学   2篇
  2020年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Journal of Radioanalytical and Nuclear Chemistry - In the original article, Equation 4 was incorrectly published. The correct equation is provided in this correction  相似文献   
2.
A new method for non-destructive analysis has been developed using a combined neutron/X-ray imaging system at the Missouri Science & Technology Reactor (MSTR). The interactions of neutrons and X-ray photons with matter produce differing characteristic information, resulting in distinctly different visual images. In order to obtain a more comprehensive picture of the structural and compositional data for a desired object, a prototype imaging system has been designed which utilizes neutron and X-ray imaging simultaneously without obstructing the beam geometry for each imaging mechanism. The current system is optimized for the imaging of small to medium sized objects of 0.5–50 mm. This new imaging capability in place at the MSTR promises great advances in the field of non-destructive testing, especially for nuclear engineering, nuclear medical science, and material science research. In an imaging object, a range of atomic number values and thermal cross-sections may be present. Where multiple materials having similar atomic number and differing thermal cross-section or vice versa may be present, exclusive neutron or X-ray analysis may exhibit shortcomings in distinguishing interfaces. However, fusing the neutron image and X-ray image into a combined image offers the strengths of both and may provide a superior method of analysis. In this paper, a novel combined X-ray and neutron imaging system will be introduced for superior analysis of certain imaging objects. Design details of experimental set-up and examples of preliminary imaging tests from individual modality will be detailed.  相似文献   
3.
The response of sandwich structures to underwater blast loading is analyzed. The analysis focuses on the effect of varying structural attributes on energy dissipation and deformation. The structures analyzed are planar sandwich plates with polymer foam cores and fiber-reinforced polymer composite facesheets. The thickness of the facesheets is varied under the conditions of constant material properties and core dimensions. The fully three-dimensional finite-element simulations carried out account for underwater blast loading through the use of the Mie-Gruneisen equation-of-state of a linear Hugoniot form and a modified Drucker-Prager core crushing model. The impulse imparted to the panels is varied from 4 to 42 kPa·s. The results show that there exists an optimal thickness of the facesheets which maximizes energy absorption in the core and minimizes the overall deflection of the structure.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号