首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2022年   2篇
  2021年   1篇
  2014年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Essential oils are biologically and environmentally safe pesticidal compounds yielded from aromatic plants. Spices are important sources of essential oils, and they are widely used in the medicine, food, and various other industries. Among the different spices, Allspice (Pimenta dioica) is underexplored in terms of its biological efficacy and a limited number of studies are available on the chemical composition of Allspice essential oil (AEO); thus, the present study evaluated the larvicidal property, the repellency, and the fumigant toxicity against common pests of stored products of AEO. AEO was found to inhibit the survival of larvae of such vectors as Aedis, Culex, and Armigeres species. Further, AEO was found to exert repellant effects against the pests of such stored products as Sitophilus, Callosobruchus, and Tribolium. Similarly, the fumigant toxicity was found to be high for AEO against these species. The contact toxicity of AEO was high against Sitophilus and Callosobruchus. Apart from that, the essential oil was found to be safe against a non-target organism (guppy fishes) and was found to be non-genotoxic in an Allium cepa model. Overall, the results of the present study indicate that the essential oil from Allspice could be used as an environmentally safe larvicidal and biopesticidal compound.  相似文献   
2.
3.
Degradation of textile dyes mediated by plant peroxidases   总被引:3,自引:0,他引:3  
The peroxidase enzyme from the plants Ipomea palmata (1.003 IU/g of leaf) and Saccharum spontaneum (3.6 IU/g of leaf) can be used as an alternative to the commercial source of horseradish and soybean peroxidase enzyme for the decolorization of textile dyes, mainly azo dyes. Eight textiles dyes currently used by the industry and seven other dyes were selected for decolorization studies at 25–200 mg/L levels using these plant enzymes. The enzymes were purified prior to use by ammonium sulfate precipitation, and ion exchange and gel permeation chromatographic techniques. Peroxidase of S. spontaneum leaf (specific activity of 0.23 IU/mg) could completely degrade Supranol Green and Procion Green HE-4BD (100%) dyes within 1 h, whereas Direct Blue, Procion Brilliant Blue H-7G and Chrysoidine were degraded >70% in 1 h. Peroxidase of Ipomea (I. palmata leaf; specific activity of 0.827 U/mg) degraded 50 mg/L of the dyes Methyl Orange (26%), Crystal Violet (36%), and Supranol Green (68%) in 2–4 h and Brilliant Green 54%), Direct Blue (15%), and Chrysoidine (44%) at the 25 mg/L level in 1 to 2 h of treatment. The Saccharum peroxidase was immobilized on a hydrophobic matrix. Four textile dyes, Procion Navy Blue HER, Procion Brilliant Blue H-7G, Procion Green HE-4BD, and Supranol Green, at an initial concentration of 50 mg/L were completely degraded within 8 h by the enzyme immobilized on the modified polyethylene matrix. The immobilized enzyme was used in a batch reactor for the degradation of Procion Green HE-4BD and the reusability was studied for 15 cycles, and the halflife was found to be 60 h.  相似文献   
4.
Silver nanoparticles form promising template for designing antimicrobial agents against drug resistant pathogenic microorganisms. Thus, the development of a reliable green approach for the synthesis of nanoparticles is an important aspect of current nanotechnology research. In the present investigation, silver nanoparticles synthesized by a soil Bacillus sp. were characterized using UV–vis spectroscopy, FTIR, SEM, and EDS. The antibacterial potential of biosynthesized silver nanoparticles, standard antibiotics, and their conjugates were evaluated against multidrug-resistant biofilm-forming coagulase-negative S. epidermidis strains, S. aureus, Salmonella Typhi, Salmonella Paratyphi, and V. cholerae. Interestingly, silver nanoparticles (AgNPs) showed remarkable antibacterial activity against all the test strains with the highest activity against S. epidermidis strains 145 and 152. In addition, the highest synergistic effect of AgNPs was observed with chloramphenicol against Salmonella typhi. The results of the study clearly indicate the promising biomedical applications of biosynthesized AgNPs.  相似文献   
5.
Plants have been employed in therapeutic applications against various infectious and chronic diseases from ancient times. Various traditional medicines and folk systems have utilized numerous plants and plant products, which act as sources of drug candidates for modern medicine. Artemisia is a genus of the Asteraceae family with more than 500 species; however, many of these species are less explored for their biological efficacy, and several others are lacking scientific explanations for their uses. Artemisia nilagirica is a plant that is widely found in the Western Ghats, Kerala, India and is a prominent member of the genus. In the current study, the phytochemical composition and the antioxidant, enzyme-inhibitory, anti-inflammatory, and anticancer activities were examined. The results indicated that the ethanol extract of A. nilagirica indicated in vitro DPPH scavenging (23.12 ± 1.28 µg/mL), ABTS scavenging (27.44 ± 1.88 µg/mL), H2O2 scavenging (12.92 ± 1.05 µg/mL), and FRAP (5.42 ± 0.19 µg/mL). The anti-inflammatory effect was also noticed in the Raw 264.7 macrophages, where pretreatment with the extract reduced the LPS-stimulated production of cytokines (p < 0.05). A. nilagirica was also efficient in inhibiting the activities of α-amylase (38.42 ± 2.71 µg/mL), α-glucosidase (55.31 ± 2.16 µg/mL), aldose reductase (17.42 ± 0.87 µg/mL), and sorbitol dehydrogenase (29.57 ± 1.46 µg/mL). It also induced significant inhibition of proliferation in breast (MCF7 IC50 = 41.79 ± 1.07, MDAMB231 IC50 = 55.37 ± 2.11µg/mL) and colon (49.57 ± 1.46 µg/mL) cancer cells. The results of the phytochemical screening indicated a higher level of polyphenols and flavonoids in the extract and the LCMS analysis revealed the presence of various bioactive constituents including artemisinin.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号