首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   9篇
  国内免费   1篇
化学   148篇
晶体学   1篇
数学   8篇
物理学   15篇
  2021年   3篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   8篇
  2012年   19篇
  2011年   12篇
  2010年   19篇
  2009年   11篇
  2008年   11篇
  2007年   7篇
  2006年   12篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
1.
Sol–gel adhesive material for isostatic hotpressing lamination process was synthesized using 3-aminopropyltrimethoxysilane (APTES), 3-glycidyloxypropyltrimethoxysilane (GPTS) and methacryloxypropyltrimethoxysilane (MPTS) as precursors. Reaction dynamics between APTES and GPTS was followed on-line with Raman spectroscopy. The lamination process was optimized by varying hotpressing times and pressures at the constant temperature. Mechanical shear strength properties were found to be excellent for studied composition, 25–30 kg/cm2 at its best. One possible application of laminated polycarbonate (PC) structure is a soldier helmet visor. Therefore, the ballistic protection properties were tested by shooting with 1.1 gram standard fragment, and determining the v50 velocity value, which corresponds to 50% perforation. The laminated structure gave 5.7% better protection compared with the solid polycarbonate. The laminated components were found to have high optical transparency at the visible wavelengths as well as high environmental stability.  相似文献   
2.
Theoretical model calculations were performed to validate the 'mobile proton' model for protonated lysylglycine (KG). Detailed scans carried out at various quantum chemical levels of the potential energy surface (PES) of protonated KG resulted in a large number of minima belonging to various protonation sites and conformers. Transition structures corresponding to proton transfer reactions between different protonation sites were determined, to obtain some energetic and structural insight into the atomic details of these processes. The rate coefficients of the proton transfer reactions between the isomers were calculated using the Rice-Ramsperger-Kassel-Marcus (RRKM) method in order to obtain a quantitative measure of the time-scale of these processes. Our results clearly indicate that the added proton is less mobile for protonated KG than for peptides lacking a basic amino acid residue. However, the energy needed to reach the energetically less favorable but-from the point of view of backbone fragmentation-critical amide nitrogen protonation sites is available in tandem mass spectrometers operated under low-energy collision conditions. Using the results of our scan of the PES of protonated KG, the dissociation pathways corresponding to the main fragmentation channels for protonated KG were also determined. Such pathways include loss of ammonia and formation of a protonated alpha-amino-epsilon-caprolactam. The results of our theoretical modeling, which revealed all the atomic details of these processes, are in agreement with the available experimental results.  相似文献   
3.
Both (±)-17α-hydroxytacamonine (3) and its 17β-isomer (4) were synthesized in two steps (one-pot) from aldehyde mixture 5/6 via the cyanohydrin reaction. NMR spectral characterization of isomer 3 revealed it to be unidentical with natural 17-hydroxytacamonine, whereas spectral data of isomer 4 were in agreement with those published for the natural isomer. The configuration at C-17 was confirmed by NOE difference spectroscopy.  相似文献   
4.
The synthesis of aldehyde intermediates suitable for the preparation of indole alkaloids of the tacamine ( 1 ) type is described. The four possible aldehydes 4–7 were prepared from methyl 5-ethylnicotinate ( 8 ) in a few simple steps using a base-catalyzed epimerization as the final step (Schemes 1 and 2). The key aldehyde 4 , which is an analogue of the important vincamine intermediate 3 (‘Oppolzer's aldehyde’), was finally converted into the indole alkaloid (±)-apotacamine ( 21 ).  相似文献   
5.
Theoretical model calculations were performed to investigate the degree of validity of the mobile proton model of protonated peptides. The structures and energies of the most important minima corresponding to different structural isomers of protonated diglycine and their conformers, as well as the barriers separating them, were determined by DFT calculations. The rate coefficients of the proton transfer reactions between the isomers were calculated using the RRKM method in order to obtain a quantitative measure of the time scale of these processes. The proton transfer reactions were found to be very fast already at and above the threshold to the lowest energy decomposition pathway. Two possible mechanisms of b2+-ion formation via water loss from the dipeptide are also discussed. The rate-determining step of the proton migration along a peptide chain is also investigated using the model compound N-formylglycylglycinamide. The investigations revealed that this process very possibly occurs via the protonation of the carbonyl oxygens of the amide bonds, and its rate-determining step is an internal rotation-type transition of the protonated C=O-H group between two adjacent C=O-HellipsisO=C bridges.  相似文献   
6.
Middle-sized b n (n????5) fragments of protonated peptides undergo selective complex formation with ammonia under experimental conditions typically used to probe hydrogen?Cdeuterium exchange in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Other usual peptide fragments like y, a, a*, etc., and small b n (n????4) fragments do not form stable ammonia adducts. We propose that complex formation of b n ions with ammonia is characteristic to macrocyclic isomers of these fragments. Experiments on a protonated cyclic peptide and N-terminal acetylated peptides fully support this hypothesis; the protonated cyclic peptide does form ammonia adducts while linear b n ions of acetylated peptides do not undergo complexation. Density functional theory (DFT) calculations on the proton-bound dimers of all-Ala b 4 , b 5 , and b 7 ions and ammonia indicate that the ionizing proton initially located on the peptide fragment transfers to ammonia upon adduct formation. The ammonium ion is then solvated by N+-H??O H-bonds; this stabilization is much stronger for macrocyclic b n isomers due to the stable cage-like structure formed and entropy effects. The present study demonstrates that gas-phase guest?Chost chemistry can be used to selectively probe structural features (i.e., macrocyclic or linear) of fragments of protonated peptides. Stable ammonia adducts of b 9 , b 9 -A, and b 9 -2A of A8YA, and b 13 of A20YVFL are observed indicating that even these large b-type ions form macrocyclic structures.  相似文献   
7.
The multidentate ligand H2 L upon complexation with Zn (II) and Cd (II) provide a one‐dimensional polymeric networks. These coordination polymers (CPs) CP‐1 and CP‐2 containing Zn (II) and Cd (II) metals respectively are well characterized. The single crystal structural analysis confirms the formation of one‐dimensional coordination polymer with zigzag fashion in CP‐1 and ladder chain CP‐2 . Both the CPs are applied as catalysts to synthesize various cyclic carbonates from epoxides and carbon dioxide. The catalysts are giving better conversion under solvent‐free and additive‐free condition using 10 bar CO2 and 100 °C as optimized pressure and temperature. The detailed kinetic experiments suggesting the first order kinetics, the energy of activation (Ea) is calculated for this catalytic conversion.  相似文献   
8.
In this paper, nanofibrillated cellulose/carboxymethyl cellulose (CMC) composite films were prepared using tape casting. The obtained transparent films showed shear induced partial alignment of fibrils along the casting direction, resulting in birefringence in cross polarized light. The carboxyl groups of CMC could be further utilized to create ionic crosslinking by treatment with glycidyl trimethyl ammonium chloride (GTMA). The GTMA treated composite films had improved mechanical properties both in wet and dry state. The chemical composition and morphologies of composites were analyzed with X-ray photoelectron spectroscopy, elemental analysis, scanning electron microscopy and wide-angle X-ray scattering.  相似文献   
9.
Using quantum chemical calculations and infrared multiphoton dissociation (IRMPD) spectroscopy in the fingerprint and X-H stretching regions, we demonstrate here that the all-Ala b 6 fragment ion features a macrocyclic structure with C2 symmetry. For this structure, the ionizing proton is equally shared by the Ala(1) and Ala(4) amide oxygens in a Zundel-type symmetric (X…H+…X) H-bond. Figure
?  相似文献   
10.
For very large proteins in the highest magnetic fields, the large chemical shift anisotropy (CSA) of carbonyl carbon deteriorates coherence transfer efficiency in experiments designed for unambiguous sequential backbone assignment. In this communication, coherence throughput of several TROSY experiments is evaluated. Two new experiments, MP-HNCA and HN(CO)CANH, are also introduced as attractive alternatives for sequential assignment purposes of large proteins with correlation time over 50 ns. Their theoretical coherence transfer efficiencies for the interresidual (13)C(alpha) correlations are significantly better than in recently introduced MP-CT-HNCA and sequential HNCA experiments. The improvement with the new experiments is observed already on 60.8 kDa homodimer of protein Cel6A at 800 (1)H MHz.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号