首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   6篇
物理学   3篇
  2024年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2007年   1篇
  2004年   1篇
  2000年   1篇
排序方式: 共有9条查询结果,搜索用时 654 毫秒
1
1.
Neutron induced radiography has been applied to the determination of boron concentrations in drinking water, collected from natural springs of Reshian and Muzaffarabad areas of Azad Kashmir, Pakistan, using CR-39 etched track detectors. The technique is based upon the simultaneous irradiation with thermal neutrons of a sample of unknown concentration and a standard of known boron concentration, fixed on a track detector. The subsequent counting of alpha and 7Li tracks in the detector resulting from the 10B(n,)7Li nuclear reaction is done after chemical etching. Boron concentration in the sample is determined by comparing 7Li and alpha-particle track density with that of a standard of known boron concentration. Boron concentrations in drinking water samples from Muzaffarabad and Reshian area of Azad Kashmir have been found to vary from (0.054±0.001) mg/l to (0.250±0.004) mg/l with an average of (0.16±0.002) mg/l. The observed concentration of boron in drinking water has been found to be less than the provisional Maximum Acceptable Concentration level (0.4 mg//l) of WHO. The drinking water from the reported area has been found to be within safe limits as far as boron related health hazards are concerned.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
2.
Journal of Solid State Electrochemistry - Manganese phosphate (Mn3(PO4)2) particles decorated polyaniline (PANI) have been proposed as a promising electrode material for supercapacitors. Mn3(PO4)2...  相似文献   
3.
The title compound, C14H20O8, was synthesized from the hydrogenation of tetra­methyl 1,4‐cyclo­hexa­diene‐1,2,4,5‐tetra­carboxyl­ate with a catalytic amount of palladium/carbon. All four carbonyl moieties of the methyl ester groups are on the same face of the chair‐conformed ring. The substantial ring distortion associated with the 1,3‐diaxial methoxycarbonyl substituents is reflected in the large difference between bond angles as well as torsion angles, respectively, that in undistorted cyclo­hexanes would be approximately the same.  相似文献   
4.
Two new tricyclic trans-clerodane diterpenoids trivially named as ballotenic acid A (1) and ballodiolic acid A (2) have been isolated from ethyl acetate fraction of Otostegia limbata. The structure assignments are based on (1)H and (13)C NMR spectra, 2D NMR (HMQC, HMBC, COSY, NOESY and NOE) techniques and comparison with the literature data.  相似文献   
5.
Biodegradable solid polymer electrolyte (SPE) is prepared by solution-casting technique using low-cost cellulose derivative, hydroxypropylmethyl cellulose (HPMC) as a host polymer. Owing to the hydrophobic nature of this polymer, it is predicted to exhibit low ionic conductivity upon addition of magnesium trifluoromethanesulfonate (MgTf2) salt. Therefore, ionic liquid (IL), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMTf), is added in order to enhance its ionic conductivity. Based on the findings, the ionic conductivity at room temperature and the dielectric behaviors of the SPE complex improved upon incorporation of 40 wt.% IL. On top of that, addition of IL reduces the degree of crystallinity and the glass transition temperature (T g ) of the SPE. The conductivity-temperature plot revealed that the transportation of ions in these films obey Arrhenius theory. The interaction between SPE complex, MgTf2 salt, and BMIMTf is investigated by means of Fourier transform infrared (FTIR) spectroscopy through the change in peak intensity around 3413, 1570, and 1060 cm?1, which are responsible for –OH stretching band, C–C and C–N bending modes of cyclic BMIM+, and C–O–C stretching band, respectively.  相似文献   
6.
7.
Solid polymer electrolyte thin films based on polyacrylamide-co-acrylic acid (PAAC) doped with sodium iodide (NaI) with different ratios of polymer and salt added with fixed amount of additive of propylene carbonate (PC) were prepared by using solution casting method. The PC was added to the mixture of the solution to provide more flexibility to the polymer film by increasing the plasticity of the thin film membrane. The conductivity and dielectric studies were carried out on these thin films to understand the ion transport properties of the polymer electrolytes. The highest conductivity obtained was 1.88?×?10?5 S cm?1 for the 30% NaI salt-doped polymer electrolyte system at room temperature. The temperature-dependent conductivity agrees with Arrhenius relationship which shows that hopping mechanism of ions in the polymer matrix. The dielectric properties especially the loss tangent used to analyze the segmental relaxation of the polymer chain as more concentration of salt was incorporated. The electric modulus was studied to understand the electrical relaxation processes to overcome electrode polarization effect.  相似文献   
8.
Experimental viscosities, η, for pure N,N-dimethylformamide (DMF) and acetone (ACT) and their binary mixtures are measured over the whole composition range as a function of temperature between 298.15 and 313.15 K. The deviations in viscosity, ?η, Gibbs free energy of activation ?G, entropies ?S*, enthalpies ?H of activation of viscous flow have been calculated. The determination of excess molar volumes, E, was calculated from the experimental viscosities for the binary mixtures. The conductor-like screening model is applied to interpret the intermolecular forces. The σ-profile is computed for the N,N-DMF and ACT with conductor-like screening model for real solvents. The experimental results were found to be in good agreement with the theoretical predictions. Moreover, viscosity data were calculated from the theoretical equations of Grunberg and Nissan, Hind et al. and Wilke for the entire systems. All results obtained were averaged experimentally and theoretically in terms of average deviations.  相似文献   
9.
As supercapacitor (SC) technology continues to evolve, there is a growing need for electrode materials with high energy/power densities and cycling stability. However, research and development of electrode materials with such characteristics is essential for commercialization the SC. To meet this demand, the development of superior electrode materials has become an increasingly critical step. The electrochemical performance of SCs is greatly influenced by various factors such as the reaction mechanism, crystal structure, and kinetics of electron/ion transfer in the electrodes, which have been challenging to address using previously investigated electrode materials like carbon and metal oxides/sulfides. Recently, tellurium and telluride-based materials have garnered increasing interest in energy storage technology owing to their high electronic conductivity, favorable crystal structure, and excellent volumetric capacity. This review provides a comprehensive understanding of the fundamental properties and energy storage performance of tellurium- and Te-based materials by introducing their physicochemical properties. First, we elaborate on the significance of tellurides. Next, the charge storage mechanism of functional telluride materials and important synthesis strategies are summarized. Then, research advancements in metal and carbon-based telluride materials, as well as the effectiveness of tellurides for SCs, were analyzed by emphasizing their essential properties and extensive advantages. Finally, the remaining challenges and prospects for improving the telluride-based supercapacitive performance are outlined.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号