首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
化学   15篇
物理学   3篇
  2022年   1篇
  2019年   2篇
  2013年   1篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  2002年   2篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Allopurinol (ALP), an inhibitor of the xanthine oxidase enzime, is reported to provide protection against free-radical mediated damage by various mechanisms, including free-radical scavenging and metal chelation (i.e. Cu(II)). To obtain a wider insight into the molecular aspects of the beneficial action of ALP, free ALP and the Cu(II)- ALP system were investigated by radiation chemical and spectroscopic studies. Pulse radiolysis experiments show that ALP is a good · OH scavenger (1.8 × 109 and 5.4 × 109 M-1 s-1 at pH 6.0 and 11.0, respectively), leading to · OH-adducts and transient semi-oxidized species, such as phenoxyl radicals. The latter are also formed by the reaction of ALP with some specific one-electron oxidizing radicals (i.e. N3 and SO4 -). The semi-oxidized species are stabilized by their resonance properties and scarcely react with oxygen. In addition, the chelation of Cu(II) by ALP does not significantly affect the reactivity of the drug towards ·OH (2.5×09 M-1 s-1). Raman and the IR spectra support the good chelating ability of ALP, indicating the formation of two Cu(II)- ALP complexes with a slightly different structure. Depending on the metal/ligand ratio, pyrimidine nitrogens may take part to the Cu(II) co-ordination in addition to the N pyrazolic atoms and the C O groups of some ALP molecules. These results suggest that ALP may inhibit oxidative damage both through the direct radical scavenging and the copper-chelation mechanism. In fact, both the conversion of a harmful radical, such as ·OH, into a less reactive transient species, and the capture of copper ions, which play a relevant role in metal-catalysed generation of reactive oxygen species, will prove beneficial for the cell protection.  相似文献   
2.
Among damages reported to occur on proteins, radical-based changes of methionine (Met) residues are one of the most important convalent post-translational modifications. The combined application of Raman and infrared (IR) spectroscopies for the characterisation of the radical-induced modifications of Met is described here. Gamma-irradiation was used to simulate the endogenous formation of reactive species such as hydrogen atoms (H), hydroxyl radicals (OH) and hydrogen peroxide (H2O2). These spectroscopic techniques coupled to mass experiments are suitable tools in detecting almost all the main radical-induced degradation products of Met that depend on the nature of the reactive species. In particular, Raman spectroscopy is useful in revealing the radical-induced modifications in the sulphur-containing moiety, whereas the IR spectra allow decarboxylation and deamination processes to be detected, as well as the formation of other degradation products. Thus, some band patterns useful for building a library of spectra–structure correlation for radical-based degradation of Met were identified. In particular, the bands due to the formation of methionine sulfoxide, the main oxidation product of Met, have been identified. All together, these results combine to produce a set of spectroscopic markers of the main processes occurring as a consequence of radical stress exposure, which can be used in a spectroscopic protocol for providing a first assessment of Met modifications in more complex systems such as peptides and proteins, and monitoring their impact on protein structure.  相似文献   
3.
Five alternating polar/hydrophobic oligopeptides derived from EAK 16 (AEAEAKAKAEAEAKAK) were examined in comparison with EAK 16 (peptide 1) both after solubilisation/lyophilisation and deposition on oxidised titanium surfaces. The peptides were synthesised for their possible use as biomimetic materials due to their self‐assembling properties and the presence, in one of them, of the arginine‐glycine‐aspartic (RGD) sequence, an active modulator of cell adhesion. Infrared (IR) and Raman spectroscopies were used to investigate the influence of the amino acid substitution on the self‐assembling properties of the peptides under both experimental conditions. In the lyophilised peptides, β‐sheet was the prevailing conformation (65–69%) as in EAK 16, irrespective of acid substitution (E→D, peptide 2), basic substitution (K→O, peptide 3), hydrophobic spacer substitution (A→Abu, peptide 4 and A→Y, peptide 5) and RGD insertion (peptide 6). After deposition on oxidised titanium, the main conformation remained β‐sheet. The side‐chain shortening of the acidic amino acid residue (peptide 2) or the insertion of a rigid and bulky residue such as Y (peptide 5) decreased the self‐assembling ability more than the side‐chain shortening of the basic amino acid residue (peptide 3) or the insertion of the RGD head (peptide 6). The interaction with the oxidised titanium surface was mainly due to carboxylate groups with a bidentate bridging coordination and C  O peptidic groups. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
4.
Melatonin, N-acetyl-5-hydroxytryptamine, is a hormone that synchronizes the internal environment with the photoperiod. It is synthesized in the pineal gland and greatly depends on the endogenous circadian clock located in the suprachiasmatic nucleus and the retina’s exposure to different light intensities. Among its most studied functions are the regulation of the waking-sleep rhythm and body temperature. Furthermore, melatonin has pleiotropic actions, which affect, for instance, the modulation of the immune and the cardiovascular systems, as well as the neuroprotection achieved by scavenging free radicals. Recent research has supported that melatonin contributes to neuronal survival, proliferation, and differentiation, such as dendritogenesis and axogenesis, and its processes are similar to those caused by Nerve Growth Factor, Brain-Derived Neurotrophic Factor, Neurotrophin-3, and Neurotrophin-4/5. Furthermore, this indolamine has apoptotic and anti-inflammatory actions in specific brain regions akin to those exerted by neurotrophic factors. This review presents evidence suggesting melatonin’s role as a neurotrophic factor, describes the signaling pathways involved in these processes, and, lastly, highlights the therapeutic implications involved.  相似文献   
5.
Classical thermogravimetry and its modification with Knudsen cells were employed to quantitatively investigate the osmo-dehydration of apple pulp samples. The data allowed realization of the complex mechanism of the process, which is not a mere solvent depletion, since it also implies sugar exchanges between the apple tissue and the hypertonic syrup used to dehydrate the fruit. The comparison between different hypertonic syrups, all at the same water activity, showed that maltose is more effective than either sucrose or a mixture of sugars that mimics the saccharide content of the apple. The conclusions are supported by a thermodynamic analysis of the aqueous solutions of these sugars at a concentration level as large as that of the hypertonic syrups used for the osmo-dehydration process.  相似文献   
6.
7.
8.
Biomimetic tandem protein/lipid damage : The reactions of reductive reactive species, produced by γ irradiation of water, with Zn and Cd complexes of a metallothionein from a plant afford diffusible sulfur‐centred radicals generated from methionine residues and sulfide ligands. These species migrate from the aqueous phase to the lipid bilayer and transform the cis double bond of the oleate moiety to trans isomer (see scheme).

  相似文献   

9.

Substance P (SP) is one of the most studied peptide hormones and knowing the relationship between its structure and function may have important therapeutic applications in the treatment of a variety of stress-related illnesses. In order to obtain a deeper insight into its folding, the effects of different factors, such as pH changes, the presence of Ca2+ ions, and the substitution of the Met-NH2 moiety in the SP structure, was studied by Raman and infrared spectroscopies. SP has a pH-dependent structure. Under acidic–neutral conditions, SP possesses a prevalent β-sheet structure although also other secondary structure elements are present. By increasing pH, a higher orderliness in the SP secondary structure is induced, as well as the formation of strongly bound intermolecular β-strands with a parallel alignment, which favour the self-assembly of SP in β-aggregates. The substitution of the Met-NH2 moiety with the acidic functional group in the SP sequence, giving rise to a not biologically active SP analogue, results in a more disordered folding, where the predominant contribution comes from a random coil. Conversely, the presence of Ca2+ ions affects slightly but sensitively the folding of the polypeptide chain, by favouring the α-helical content and a different alignment of β-strands; these are structural elements, which may favour the SP biological activity. In addition, the capability of SERS spectroscopy to detect SP in its biologically active form was also tested by using different metal nanoparticles. Thanks to the use of silver NPs prepared by reduction of silver nitrate with hydroxylamine hydrochloride, SP can be detected at very low peptide concentration (~ 90 nM). However, the SERS spectra cannot be obtained under alkaline conditions since both the formation of SP aggregates and the lack of ion pairs do not allow a strong enough interaction of SP with silver NPs.

Graphical abstract

  相似文献   
10.
Damages induced by free radicals on human serum albumin (HSA), the most prominent protein in plasma, were investigated by Raman spectroscopy. HSA underwent oxidative and reductive radical stress. Gamma-irradiation was used to simulate the endogenous formation of reactive radical species such as hydrogen atoms (H), solvated electrons (eaq) and hydroxyl radicals (OH). Raman spectroscopy was shown to be a useful tool in identifying conformational changes of the protein structure and specific damages occurring at sensitive amino acid sites. In particular, the analysis of the S–S stretching region suggested the radical species caused modifications in the 17 disulphide bridges of HSA. The concomitant action of eaq and H atoms caused the formation of cyclic disulphide bridges, showing how cystine pairs act as efficient interceptors of reducing species, by direct scavenging and electron transfer reactions within the protein. This conclusion was further confirmed by the modifications visible in the Raman bands due to Phe and Tyr residues. As regards to protein folding, both oxidative and reductive radical stresses were able to cause a loss in α-helix content, although the latter remains the most abundant secondary structure component. β-turns motifs significantly increased as a consequence of the synergic action of eaq and H atoms, whereas a larger increase in the β-sheet content was found following the exposure to OH and/or H attack.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号