首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   16篇
数学   3篇
物理学   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2012年   2篇
  2008年   1篇
  2007年   2篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
Phanerochaete chrysosporium basidiospores immobilized onto carboxymethylcellulose were used for the removal of mercury ions from aqueous solutions. The biosorption of Hg(II) ions onto carboxymethylcellulose and both immobilized live and heat-inactivated fungal mycelia of Phanerochaete chrysosporium was studied using aqueous solutions in the concentration range 30-700 mg l−1. The biosorption of Hg(II) ions by the carboxymethylcellulose and both live and heat-inactivated immobilized preparations increased as the initial concentration of mercury ions increased in the medium. Maximum biosorption capacity for immobilized live and heat-inactivated fungal mycelia of Phanerochaete chrysosporium was found to be 83.10 and 102.15 mg Hg(II) g−1, respectively, whereas the amount of Hg(II) ions adsorbed onto the plain carboxymethylcellulose beads was 39.42 mg g−1. Biosorption equilibria were established in approximately 1 h and the correlation regression coefficients show that the adsorption process can be well defined by a Langmuir equation. Temperature changes between 15 and 45 °C did not affect the biosorption capacity. The effect of pH was also investigated and the maximum adsorption of Hg(II) ions onto the carboxymethylcellulose and both live and heat-inactivated immobilized fungal mycelia was observed at pH 6.0. The carboxymethylcellulose-fungus beads could be regenerated using 10 mM HCl, with up to 95% recovery. The biosorbents were used in three biosorption-desorption cycles and no significant loss in the biosorption capacity was observed.  相似文献   
2.
Concanavalin A (Con A) immobilized poly(2-hydroxyethyl methacrylate) (PHEMA) beads were investigated for specific adsorption of yeast invertase from aqueous solutions. PHEMA beads were prepared by a suspension polymerization technique with an average size of 150-200 microm, and activated by epichlorohydrin. Con A was then immobilized by covalent binding onto these beads. The maximum Con A immobilization was found to be 10 mg/g. The invertase-loading capability of the PHEMA/Con A beads was 107 mg/g. The maximum invertase adsorption capacity on the PHEMA/Con A adsorbents was observed at pH 5.0. The values of the Michaelis constant K(m) of invertase were significantly larger upon adsorption, indicating decreased affinity by the enzyme for its substrate, whereas V(max) was smaller for the adsorbed invertase. Adsorption improved the pH stability of the enzyme as well as its temperature stability. Thermal stability was found to increase with adsorption. The adsorbed enzyme activity was found to be quite stable in repeated experiments. Storage stability of adsorbed invertase.  相似文献   
3.
4.
Poly(glycidyl methacrylate-ethyleneglycol dimethacrylate), p(GA–EGMA), microbeads were prepared through suspension polymerization. It was decorated with polyethylene imine (PEIM) and tris(2-aminoethyl)amine (TAEA) ligands to decorate with polyamine groups. These microbeads were used for sorption of uranium ions from aqueous solution. The maximum sorption of uranium ions on the PEIM and TAEA modified microbeads was observed at pH 6.0. The maximum sorption capacity of acid hydrolyzed p(GA–EGMA)–OH, p(GA–EGMA)–PEIM and p(GA–EGMA)–TAEA microbeads was found to be 7.21, 87.8 and 64.3 mg g?1. The sorption process conforms to the pseudo-second order kinetic model and the Langmuir and Temkin isotherm models well.  相似文献   
5.
We have developed a new biosensor architecture, which is comprised of a polypeptide-peptide nucleic acid tri-block copolymer and which we have termed chimeric peptide beacons (CPB), that generates an optical output via a mechanism analogous to that employed in DNA-based molecular beacons.  相似文献   
6.
7.
8.
A white rot fungus species Lentinus sajor-caju biomass was entrapped into alginate gel via a liquid curing method in the presence of Ca(II) ions. The biosorption of cadmium(II) by the entrapped live and dead fungal biomass has been studied in a batch system. The heat-treatment process enhanced the biosorption capacity of the immobilized fungal biomass. The effect of initial cadmium concentration, pH and temperature on cadmium removal has been investigated. The maximum experimental biosorption capacities for entrapped live and dead fungal mycelia of L. sajur-caju were found to be 104.8±2.7 mg Cd(II) g−1 and 123.5±4.3 mg Cd(II) g−1, respectively. The kinetics of cadmium biosorption was fast, approximately 85% of biosorption taking place within 30 min. The biosorption equilibrium was well described by Langmuir and Freundlich adsorption isotherms. The change in the biosorption capacity with time is found to fit pseudo-second-order equations. Cadmium binding properties of entrapped fungal preparations have been determined applying the Ruzic equations. Since the biosorption capacities are relatively high for both entrapped live and dead forms, they could be considered as suitable biosorbents for the removal of cadmium in wastewater treatment systems. The biosorbents were reused in three consecutive adsorption/desorption cycles without significant loss in the biosorption capacity.  相似文献   
9.
We go back and forth between, on the one hand, presentations of arithmetic and Kac-Moody groups and, on the other hand, presentations of profinite groups, deducing along the way new results on both.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号