首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   10篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2004年   1篇
  1975年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
2.
3.
A novel amperometric uric acid biosensor was fabricated by immobilizing uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi–CNTsNF) covering an electrodeposited layer of silver nanoparticles (AgNPs) on a gold electrode (uricase/Chi–CNTsNF/AgNPs/Au). The uric acid response was determined at an optimum applied potential of ?0.35 V vs Ag/AgCl in a flow-injection system based on the change of the reduction current for dissolved oxygen during oxidation of uric acid by the immobilized uricase. The response was directly proportional to the uric acid concentration. Under the optimum conditions, the fabricated uric acid biosensor had a very wide linear range, 1.0–400 μmol L?1, with a very low limit of detection of 1.0 μmol L?1 (s/n?=?3). The operational stability of the uricase/Chi–CNTsNF/AgNPs/Au biosensor (up to 205 injections) was excellent and the storage life was more than six weeks. A low Michaelis–Menten constant of 0.21 mmol L?1 indicated that the immobilized uricase had high affinity for uric acid. The presence of potential common interfering substances, for example ascorbic acid, glucose, and lactic acid, had negligible effects on the performance of the biosensor. When used for analysis of uric acid in serum samples, the results agreed well with those obtained by use of the standard enzymatic colorimetric method (P?>?0.05).
Figure
An amperometric uric acid biosensor was developed by immobilized uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi-CNTsNF) covering an electrodeposited silver nanoparticles layer (AgNPs) on gold electrode (uricase/Chi-CNTsNF/AgNPs/Au). The uric acid response was determined at an optimal applied potential of -0.35 V vs Ag/AgCl based on the change of the reduction current for dissolved oxygen.  相似文献   
4.
We report on a simple and highly sensitive amperometric method for the determination of bisphenol A (BPA) using pencil graphite electrodes modified with polyaniline nanorods and multiwalled carbon nanotubes. The modified electrodes display enhanced electroactivity for the oxidation of BPA compared to the unmodified pencil graphite electrode. Under optimized conditions, the sensor has a linear response to BPA in the 1.0 and 400?μM concentration range, with a limit of detection of 10?nM (at S/N?=?3). The modified electrode also has a remarkably stable response, and up to 95 injections are possible with a relative standard deviation of 4.2% at 100?μM of BPA. Recoveries range from 86 to 102% for boiling water spiked with BPA from four brands of baby bottles.
Figure
Polyaniline nanorods/MWCNTs modified pencil graphite electrode was fabricated for sensitive detection of bisphenol A. Experimental results indicated that it was a feasible alternative sensor to existing methods.  相似文献   
5.
Detection of ultra-trace amounts of antigens by label-free capacitive immunosensors was investigated using electrodes modified with silver nanoparticles (AgNPs) that allows for an increase in the amount of immobilized antibodies. The optimal amount of AgNPs that provided the highest immobilization yield was 48 pmol (in 2.0 mL). The performances of immunosensor electrodes for human serum albumin prepared with AgNPs, were compared to electrodes prepared with gold nanoparticles. The two systems provided the same linear range (1.0 × 10−18 to 1.0 × 10−10 M) and detection limit (1.0 × 10−18 M). The system with AgNPs was used to analyze albumin in urine samples and the results agreed well with the immunoturbidimetric assay (P > 0.05). Electrodes modified with AgNPs and appropriate antibodies were tested for their performances to detect analytes of different sizes. For a macromolecule (human serum albumin) the incorporation of AgNPs improved the detection limit from 100 to 1 aM. For small molecules, microcystin-LR and penicillin G, the detection limits were lowered from 100 and 10 fM to 10 and 0.7 fM, respectively. The high sensitivity and very low detection limits are potentially useful for the analysis of toxins or residues present in samples at ultra-trace levels and this method could easily be applied to other affinity pairs.  相似文献   
6.
A nanoporous copper film was fabricated on a copper wire by electrodeposition of copper/zinc alloy and chemically etching of zinc. The surface morphology was investigated by SEM. When applied to detect glucose in an amperometric flow injection system the porous copper electrode provided 12 times higher sensitivity than solid copper. It could be continuously used up to 50 times (%RSD=5.7). Different preparations of the porous film provided reproducible responses (P<0.05). Detection of glucose in E. coli cultivation medium compared well with spectrophotometric technique (P<0.05). This simple technique can produce a nanoporous electrode with good performances and can easily be applied to other metals and analytes.  相似文献   
7.
8.
For the first time, a simple and highly sensitive label-free electrochemical carcinoembryonic antigen (CEA) immunosensor based on a cryogel electrode has been developed and tested. The as-prepared nanocomposite combined the advantages of the graphene, AuNPs and chitosan (AuNPs–GP–CS) together with the ease of preparing a cryogel coupled to a silver deposition, to act as a redox mediator, on a Au electrode. Under the optimal conditions, the decrease of the cyclic voltammetry (CV) silver peak current was proportional to the CEA concentration over a range of from 1.0 × 10−6 to 1.0 ng mL−1 with a detection limit of 2.0 × 10−7 ng mL−1. This AuNPs–GP–CS cryogel electrode gave a 1.7 times higher sensitivity and 25 times lower detection limit than the non-cryogel electrode. Moreover, the proposed electrochemical immunosensor exhibited good selectivity, reproducibility and stability. When applied to analyse clinical serum samples, the data determined by the developed immunosensor were in agreement with those obtained by the current hospital analysis system (enzyme linked fluorescent assay) (P > 0.05), to indicate that the immunosensor would be potentially useful for clinical diagnostics.  相似文献   
9.
An analytical procedure using supercritical fluid extraction (SFE) and capillary gas chromatography with electron-capture detection was developed to determine simultaneously residues of different pesticides (organochlorine, organophosphorus, organonitrogen and pyrethroid) in honey samples. Fortification experiments were conducted to test conventional extraction (liquid-liquid) and optimize the extraction procedure in SFE by varying the CO2-modifier, temperature, extraction time and pressure. Best efficiency was achieved at 400 bar using acetonitrile as modifier at 90 degrees C. For the clean-up step, Florisil cartridges were used for both methods LLE and SFE. Recoveries for majority of pesticides from fortified samples of honey at fortification level of 0.01-0.10 mg/kg ranged 75-94% from both methods. Limits of detection found were less than 0.01 mg/kg for ECD and confirmation of pesticide identity was performed by gas chromatography-mass spectrometry in selected-ion monitoring mode. The multiresidue methods in real honey samples were applied and the results of developed methods were compared.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号