首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   8篇
  国内免费   1篇
化学   124篇
力学   7篇
数学   27篇
物理学   63篇
  2023年   3篇
  2022年   3篇
  2021年   8篇
  2020年   4篇
  2019年   10篇
  2018年   9篇
  2017年   9篇
  2016年   9篇
  2015年   7篇
  2014年   17篇
  2013年   13篇
  2012年   25篇
  2011年   21篇
  2010年   12篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   9篇
  2004年   8篇
  2003年   7篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
1.
In the present study, we investigated remote laser-induced fluorescence (LIF), at a distance of 4.8 m, of a variety of natural minerals and rocks, and Hawaiian Ti (Cordyline terminalis) plant leaves. These minerals included calcite cleavage, calcite onex and calcite travertine, gypsum, fluorapatite, Dover flint and chalk, chalcedony and nephelene syenite, and rubies containing rock. Pulsed laser excitation of the samples at 355 and 266 nm often resulted in strong fluorescence. The LIF bands in the violet-blue region at approximately 413 and approximately 437 nm were observed only in the spectrum of calcite cleavage. The green LIF bands with band maxima in the narrow range of approximately 501-504 nm were observed in the spectra of all the minerals with the exception of the nephelene syenite and ruby rocks. The LIF red bands were observed in the range approximately 685-711 nm in all samples. Excitation with 532 nm wavelength laser gave broad but relatively low fluorescence background in the low-frequency region of the Raman spectra of these minerals. One microsecond signal gating was effective in removing nearly all background fluorescence (with peak at approximately 610 nm) from calcite cleavage Raman spectra, indicating that the fluorescence was probably from long-lifetime inorganic phosphorescence.  相似文献   
2.
A remote Raman system has been developed utilizing a 532nm pulsed laser and gated intensified charged couple device (ICCD) detector in the oblique geometry. When the system is set for 50m sample distance it is capable of measuring Raman spectra of minerals located at distances in the range of 10-65m from the telescope. Both daytime and nighttime operations are feasible and the spectra of minerals can be measured in a short period of time, of the order of a few seconds. In oblique geometry, measured sampling depth is more than 30m, during which the system maintains very high performance without any adjustments. Much longer sampling depth (0.1-120m) has been observed when the system is configured in the coaxial geometry. Clear advantages of using a gated detection mode over the continuous (CW) mode of operation in reducing the background signal and eliminating long-lived fluorescence signals from the Raman spectra are presented. The performance of the pulsed Raman system is demonstrated by measuring spectra of Raman standards including benzene (C(6)H(6)) and naphthalene (C(10)H(8)), a low Raman cross section silicate mineral muscovite (KAl(2)(Si(3)Al)O(10)(OH)(2)), and a medium Raman cross section mineral calcite (CaCO(3)).  相似文献   
3.
A metal‐free approach for the synthesis of 2‐acylpyrroles is reported in this paper. Synthesis of the target molecule started from chalcones and was carried out in two steps. Initial step involved the conversion of chalcones to corresponding 4‐substituted‐3‐acylpyrroles by reaction with TosMIC. In the subsequent step, target molecules were obtained in modest to good yields by polyphosphoric acid‐mediated acyl rearrangement of 3‐acylpyrroles to their 2‐acyl congeners. The crucial final step was amenable to diverse substitutions on pyrrole ring. Preliminary experiment for the determination of mechanism indicated the involvement of acylium ion.  相似文献   
4.
Anisotropic fluids (e.g. liquid crystals) offer a remarkable promise as optofluidic materials owing to the directional, tunable, and coupled interactions between the material, flow, and the optical fields. Here we present a comprehensive in silico treatment of this anisotropic interaction by performing nonequilibrium molecular dynamics simulations. We quantify the response of a nematic liquid crystal (NLC) undergoing a Poiseuille flow in the Stokes regime, while being illuminated by a laser beam incident perpendicular to the flow direction. We adopt a minimalistic model to capture the interactions, accounting for two features: first, the laser heats up the NLC locally; and second, the laser polarises the NLC and exerts an optical torque that tends to reorient molecules of the nematic phase. Because of this reorientation the liquid crystal exhibits small regions of biaxiality, where the nematic director is one symmetry axis and the axis of rotation for the reorientation of the molecules is the other one. We find that the relative strength of the viscous and the optical torques mediates the flow-induced response of the biaxial regions, thereby tuning the emergence, shape and location of the regions of enhanced biaxiality. The mechanistic framework presented here promises experimentally tractable routes toward novel optofluidic applications based on material-flow-light interactions.  相似文献   
5.
6.
The stuffed tridymite structure Ba(Zn/Co)1−xSi1−xM2xO4 (M=Al3+ and Fe3+) is explored for the possible multiferroic behavior and to develop new inorganic colored materials. The compounds were synthesized by employing conventional solid-state chemistry methods in the temperature range 1100–1175 °C for 24 h. The powder X-ray diffraction (PXRD) and Rietveld refinement studies indicate that the compounds stabilize in the P63 space group (no. 173). The refinement results were also rationalized by employing Raman spectroscopic studies. The compounds were found to be second harmonic generation (SHG) active and show weak ferroelectric behavior. The co-substitution of Co2+ and Fe3+ in the structure gives rise to a weak ferromagnetic behavior to the compound, BaCo0.75Si0.75Fe0.5O4, making it a multiferroic material. The optical studies on the prepared compounds exhibited blue color (Co2+ in Td geometry), purple color (Ni2+ in Td geometry), and simultaneous substitution of Co2+ and Fe3+ gives rise to blue-green color owing to metal-to-metal charge transfer (MMCT) effect.  相似文献   
7.
The present work deals with fabrication and characterization of the zinc oxide (ZnO) nanowire based novel two-electrode capacitive biosensors on flexible Polyethylene terephthalate (PET) substrates for accurate estimation of glucose by analyzing the fundamental dielectric nature of the relevant sample. The morphology and crystalline quality of grown nanowires are analyzed by using field-emission scanning electron microscope (FESEM) and X-ray diffractometer (XRD), respectively. Current and capacitance values of the device have been studied for ten different glucose concentrations relevant to the physiological standards. The analytical performance of the devices in terms of enzyme activity, reliability and flexibility has also been evaluated.  相似文献   
8.
Journal of Radioanalytical and Nuclear Chemistry - We describe a simple, user friendly two-step radioimmunoassay (RIA) based on antibody coated tubes for the measurement of free triiodothyronine in...  相似文献   
9.
The world is witnessing tumultuous times as major economic powers including the US, UK, Russia, India, and most of Europe continue to be in a state of lockdown. The worst-hit sectors due to this lockdown are sales, production (manufacturing), transport (aerospace and automotive) and tourism. Lockdowns became necessary as a preventive measure to avoid the spread of the contagious and infectious “Coronavirus Disease 2019” (COVID-19). This newly identified disease is caused by a new strain of the virus being referred to as Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS CoV-2; formerly called 2019-nCoV). We review the current medical and manufacturing response to COVID-19, including advances in instrumentation, sensing, use of lasers, fumigation chambers and development of novel tools such as lab-on-the-chip using combinatorial additive and subtractive manufacturing techniques and use of molecular modelling and molecular docking in drug and vaccine discovery. We also offer perspectives on future considerations on climate change, outsourced versus indigenous manufacturing, automation, and antimicrobial resistance. Overall, this paper attempts to identify key areas where manufacturing can be employed to address societal challenges such as COVID-19.  相似文献   
10.
Vanadium redox flow battery (VRFB) is a promising technology for large-scale renewable energy storage. Design of ion-exchange membrane (IEM) with desired properties like low-cost, mechanically chemically stable, low vanadium ion permeability and high proton conductivity is one of the major challenges. Here, we report the design and synthesis of novel poly(tetrafluoroethylene)-zirconium phosphate (PTFE-ZrP) asymmetric IEM using a simple brush coating method. XRD results confirmed the presence of α-ZrP crystalline phase onto the top layer of the membrane. Excellent mechanical strength was observed with burst pressure of 3.22 × 105 N m?2. Oxidative stability of membrane in Fenton’s reagent was much better than Nafion-115. Vanadium ion (V4+) permeability of the membrane was more than three times lower than that of Nafion-115. Single-cell VRFB with PTFE-ZrP membrane showed ~80% energy efficiency below 30 mA cm?2. Very high columbic efficiency ~100% of VRFB with PTFE-ZrP membrane confirmed little contamination of electrolyte due to cross-mixing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号