首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
化学   27篇
数学   4篇
物理学   14篇
  2019年   1篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2008年   2篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2002年   1篇
  2001年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
(Methacryloyl ethylenedioxycarbonyl) benzyl N,N‐diethyldithiocarbamate (HEMA‐E‐In) was synthesized and used as a monomer iniferter to develop a novel, photopatternable grafting technology. This molecule functions as both a methacrylic monomer and a photoiniferter (photoinitiator–transfer agent–terminator). The structure of HEMA‐E‐In was characterized by 1H NMR, Fourier transform infrared, and ultraviolet–visible spectroscopies. In the presence of the monomer iniferter, methyl methacrylate was polymerized by exposure to 365‐nm ultraviolet radiation, confirming the initiation capability of HEMA‐E‐In. After the copolymerization of HEMA‐E‐In into a methacrylate‐based polymer, attenuated total reflectance Fourier transform infrared spectra revealed that the photoiniferter functionality was present at the surface of this polymeric substrate. Photografting of poly(ethylene glycol) monomethacrylate monomer from the surface caused a significant change in the hydrophobicity of the surface as demonstrated by contact angle measurements. The novel monomer photoiniferter HEMA‐E‐In initiates the polymerization of bulk monomer and provides a reactive functionality that facilitates further initiation and polymer modification by the polymerization of different monomers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1885–1891, 2002  相似文献   
2.
3.
Bio-orthogonal tetrazine click reactions have recently attracted significant interest for applications spanning biological imaging, cancer targeting, and biomaterials science. Here, we report a simple and efficient two-step scheme for the synthesis of an asymmetric tetrazine molecule containing a carboxylic acid handle for subsequent macromolecular conjugation. Yields as high as 75% were achieved using as little as 0.005 equiv of nickel triflate catalyst, which is a significant improvement over previous methodologies.  相似文献   
4.
5.
Using the approach of Rulla (1996 SIAM J. Numer. Anal. 33, 68-87)for analysing the time discretization error and assuming moreregularity on the initial data, we improve on the error boundderived by Barrett and Blowey (1996 IMA J. Numer. Anal. 16,257-287) for a fully practical piecewise linear finite elementapproximation with a backward Euler time discretization of amodel for phase separation of a multi-component alloy.  相似文献   
6.
Various techniques have been adopted to impart a biological responsiveness to synthetic hydrogels for the delivery of therapeutic agents as well as the study and manipulation of biological processes and tissue development. Such techniques and materials include polyelectrolyte gels that swell and deswell with changes in pH, thermosensitive gels that contract at physiological temperatures, and peptide cross-linked hydrogels that degrade upon peptidolysis by cell-secreted enzymes. Herein we report a unique approach to photochemically deform and degrade disulfide cross-linked hydrogels, mitigating the challenges of light attenuation and low quantum yield, permitting the degradation of hydrogels up to 2 mm thick within 120 s at low light intensities (10 mW/cm(2) at 365 nm). Hydrogels were formed by the oxidation of thiol-functionalized 4-armed poly(ethylene glycol) macromolecules. These disulfide cross-linked hydrogels were then swollen in a lithium acylphosphinate photoinitiator solution. Upon exposure to light, photogenerated radicals initiate multiple fragmentation and disulfide exchange reactions, permitting and promoting photodeformation, photowelding, and photodegradation. This novel, but simple, approach to generate photoadaptable hydrogels portends the study of cellular response to mechanically and topographically dynamic substrates as well as novel encapsulations by the welding of solid substrates. The principles and techniques described herein hold implications for more than hydrogel materials but also for photoadaptable polymers more generally.  相似文献   
7.
The formation of reactive substrates with iniferter‐mediated living radical photopolymerization is a powerful technique for surface modification, which can readily be used to facilitate the incorporation of a variety of surface functionalities. In this research, the photopolymerization kinetics of novel bulk thiol–ene systems have been compared with those of typical acrylate and methacrylate systems when polymerized in the presence of the photoiniferter p‐xylene bis(N,N‐diethyl dithiocarbamate) (XDT). In the presence of XDT, the thiol–ene systems photopolymerize more quickly than the traditional acrylate and methacrylate systems by one to two orders of magnitude. Fourier transform infrared spectroscopy has been used to monitor the photografting kinetics of various monomers on dithiocarbamate‐functionalized surfaces. Furthermore, this technique has been used to evaluate surface‐initiation kinetics and to emphasize the influence of bulk substrate properties on grafting kinetics. Finally, photopatterning has been demonstrated on a dithiocarbamate‐incorporated thiol–ene substrate with conventional photolithographic techniques. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2134–2144, 2005  相似文献   
8.
There is a growing interest in materials that can dynamically change their properties in the presence of cells to study mechanobiology. Herein, we exploit the 365 nm light mediated [4+4] photodimerization of anthracene groups to develop cytocompatible PEG‐based hydrogels with tailorable initial moduli that can be further stiffened. A hydrogel formulation that can stiffen from 10 to 50 kPa, corresponding to the stiffness of a healthy and fibrotic heart, respectively, was prepared. This system was used to monitor the stiffness‐dependent localization of NFAT, a downstream target of intracellular calcium signaling using a reporter in live cardiac fibroblasts (CFbs). NFAT translocates to the nucleus of CFbs on stiffening hydrogels within 6 h, whereas it remains cytoplasmic when the CFbs are cultured on either 10 or 50 kPa static hydrogels. This finding demonstrates how dynamic changes in the mechanical properties of a material can reveal the kinetics of mechanoresponsive cell signaling pathways that may otherwise be missed in cells cultured on static substrates.  相似文献   
9.
10.
Crosslinked polymer networks are used in a wide variety of applications. To use these materials effectively, a fundamental understanding of their structural evolution and the relationship between material properties and structure is essential. In this article, a novel technique employing “iniferters,” i.e., living radical polymerizations, to photopolymerize these networks is utilized to study the property and structural evolution of these highly desirable materials. Living radical polymerizations are used in this work since this technique avoids the problem of carbon radical trapping encountered while using conventional initiators. Dynamic mechanical measurements are performed on highly crosslinked methacrylate networks to glean information regarding their structural heterogeneity. By performing these measurements on homopolymerized samples at various stages of the reaction and on copolymerized samples of multifunctional methacrylates, the mechanical properties are characterized as a function of double bond conversion and comonomer composition. From such analyses, with respect to both temperature and frequency, quantitative conclusions regarding the structure of the networks are drawn. This effort is aimed at exploiting the living radical polymerizations initiated by p-xylylene bis(N,N-diethyl dithiocarbamate) (XDT), to study the mechanical property evolution and structural heterogeneity of crosslinked polymers which is nearly impossible otherwise. Polymers examined in this study include networks formed by homopolymerization of diethylene glycol dimethacrylate (DEGDMA) and polyethylene glycol 600 dimethacrylate (PEG600DMA) as well as copolymers of DEGDMA and PEG600DMA. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2297–2307, 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号