首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   4篇
化学   75篇
力学   4篇
数学   5篇
物理学   41篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2013年   7篇
  2012年   9篇
  2011年   7篇
  2010年   9篇
  2009年   1篇
  2008年   7篇
  2007年   9篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   8篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1981年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有125条查询结果,搜索用时 46 毫秒
1.
This paper characterizes the basic electrokinetic phenomena occurring within native poly(dimethylsiloxane) (PDMS) microchannels. Using simple buffers and current measurements, current density and electroosmosis data were determined in trapezoidal, reversibly sealed PDMS/PDMS and hybrid PDMS/glass channels with a cross-sectional area of 1035.5 microm(2) and about 6 cm length. This data was then compared to that obtained in an air-thermostated 50 microm inner diameter (1963.5 microm(2) cross-sectional area) fused-silica (FS) capillary of 70 cm length. Having a pH 7.8 buffer with an ionic strength (I) of 90 mM, Ohms's law was observed in the microchannels with electric field strengths of up to about 420 V/cm, which is about twice as high as for the FS capillary. The electroosmotic mobility (micro(EO)) in PDMS and FS is shown to exhibit the same general dependences on I and pH. For all configurations tested, the experimentally determined micro(EO) values were found to correlate well with the relationship micro(EO) = a + b log(I), where a and b are coefficients that are determined via nonlinear regression analysis. Electroosmotic fluid pumping in native PDMS also follows a pH dependence that can be estimated with a model based upon the ionization of silanol. Compared to FS, however, the magnitude of the electroosmotic flow in native PDMS is 50-70% smaller over the entire pH range and is difficult to maintain at acidic pH values. Thus, the origin of the negative charge at the inner wall of PDMS, glass, and FS appears to be similar but the density is lower for PDMS than for glass and FS.  相似文献   
2.
3.
Nowadays, there is increasing interest in natural antioxidants from food by‐products. Astaxanthin is a potent antioxidant and one of the major carotenoids in crustaceans and salmonids. An ultra‐high pressure liquid chromatographic method was developed and validated for the determination of astaxanthin in shrimp by‐products, and its migration from new packaging materials to food simulants was also studied. The method uses an UPLC® BEH guard‐column (2.1 × 5 mm, 1.7 µm particle size) and an UPLC® BEH analytical column (2.1 × 50 mm, 1.7 µm particle size). Chromatographic separation was achieved using a programmed gradient mobile phase consisting of (A) acetonitrile–methanol (containing 0.05 m ammonium acetate)–dichloromethane (75:20:5, v/v/v) and (B) ultrapure water. This method was evaluated with respect to validation parameters such as linearity, precision, limit of detection, limit of quantification and recovery. Low‐density polyethylene films were prepared with different amounts of the lipid fraction of fermented shrimp waste by extrusion, and migration was evaluated into food simulants (isooctane and ethanol 95%, v/v). Migration was not detected under the tested conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
Large-scale amine-based CO2 capture will generate waste containing large amounts of ammonia, in addition to contaminants such as the actual amine as well as degradation products thereof. Monoethanolamine (MEA) has been a dominant amine applied so far in this context. This study reveals how biological N removal can be achieved even in systems heavily contaminated by MEA in post- as well as pre-denitrification treatment systems, elucidating the rate-limiting factors of nitrification as well as aerobic and denitrifying biodegradation of MEA. The hydrolysis of MEA to ammonia readily occurred both in post- and pre-denitrification treatment systems with a hydraulic retention time of 7 h. MEA removal was ≥99?±?1 % and total nitrogen removal 77?±?10 % in both treatment systems. This study clearly demonstrates the advantage of pre-denitrification over post-denitrification for achieving biological nitrogen removal from MEA-contaminated effluents. Besides the removal of MEA, the removal efficiency of total nitrogen as well as organic matter was high without additional carbon source supplied.  相似文献   
5.
A ferrofluid with 1,2-Benzenediol-coated iron oxide nanoparticles was synthesized and physicochemically analyzed. This colloidal system was prepared following the typical co-precipitation method, and superparamagnetic nanoparticles of 13.5 nm average diameter, 34 emu/g of magnetic saturation, and 285 K of blocking temperature were obtained. Additionally, the zeta potential showed a suitable colloidal stability for cancer therapy assays and the magneto-calorimetric trails determined a high power absorption density. In addition, the oxidative capability of the ferrofluid was corroborated by performing the Fenton reaction with methylene blue (MB) dissolved in water, where the ferrofluid was suitable for producing reactive oxygen species (ROS), and surprisingly a strong degradation of MB was also observed when it was combined with H2O2. The intracellular ROS production was qualitatively corroborated using the HT-29 human cell line, by detecting the fluorescent rise induced in 2,7-dichlorofluorescein diacetate. In other experiments, cell metabolic activity was measured, and no toxicity was observed, even with concentrations of up to 4 mg/mL of magnetic nanoparticles (MNPs). When the cells were treated with magnetic hyperthermia, 80% of cells were dead at 43 °C using 3 mg/mL of MNPs and applying a magnetic field of 530 kHz with 20 kA/m amplitude.  相似文献   
6.
7.
The sorption of Pu(VI) onto TiO(2) was studied as a function of pH (2-10) and Pu concentration (10(-8)-10(-4) M) under an N(2) atmosphere, in 0.016 and 0.1 M NaClO(4). A batch-wise method was used, in which pH was measured in separate experimental containers after removal of a sample to determine the amount of Pu that had been sorbed. As Pu is radioactive, it was used as a tracer and measured by liquid scintillation counting. No ionic strength dependence was discerned, which was taken as an indication of inner sphere complex formation. In the interval of pH 2-7 the system could be described by the formation of two positively charged surface complexes using a 1-pK Stern model. Sorption of the plutonyl ion (PuO(2)(2+)) and the first hydrolysis species (PuO(2)(OH)(+)) was estimated using FITEQL to logK(1)=6.9 and logK(2)=1.4, respectively.  相似文献   
8.
The gelation process of TEOS sols in three different solvents using di-n-butyltin dilaurate (DBTL) as polycondensation catalyst has been investigated. Sol compositions were similar to those employed in the field of stone consolidation for the conservation of historical buildings. Three different systems were studied: TEOS in ethanol (S-EtOH) which was tested to explain gelation in protic solvents; TEOS in a mixture of methylethylketone/acetone (S-MA) to represent aprotic solvents; and TEOS in a blend of MEK/ethanol (S-ME) for comparison of a system with properties intermediate between protic and aprotic solvents. The gelation process was studied by measuring the viscoelastic behavior near the gelation point (GP). A scaling exponent (Δ) was determined for the elastic modulus, G(ω)′ and the viscous modulus, G′′(ω), which both follow the same power law, ωΔ, at GP. The fractal dimension, df, was calculated from the scaling exponent, Δ, for each TEOS-DBTL system. For each type of solvent studied, values of Δ from 0.34 to 0.53 with df of 1.9–2.2 were obtained. The results suggest that DBTL leads to a TEOS polycondensation mechanism similar to that observed for a base-catalyst system. However, the change in df suggests that there is a significant effect of the solvent on aggregation mechanisms of the gelation process. A diffusion limited cluster–cluster aggregation mechanism (DLCCA) was observed when ethanol was used as protic solvent, while a reaction limited cluster–cluster aggregation mechanism (RLCCA) was observed for MEK/acetone (aprotic solvent).  相似文献   
9.
The current technology of air‐filtration materials for protection against highly toxic chemicals, that is, chemical‐warfare agents, is mainly based on the broad and effective adsorptive properties of hydrophobic activated carbons. However, adsorption does not prevent these materials from behaving as secondary emitters once they are contaminated. Thus, the development of efficient self‐cleaning filters is of high interest. Herein, we report how we can take advantage of the improved phosphotriesterase catalytic activity of lithium alkoxide doped zirconium(IV) metal–organic framework (MOF) materials to develop advanced self‐detoxifying adsorbents of chemical‐warfare agents containing hydrolysable P? F, P? O, and C? Cl bonds. Moreover, we also show that it is possible to integrate these materials onto textiles, thereby combining air‐permeation properties of the textiles with the self‐detoxifying properties of the MOF material.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号