首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
化学   20篇
数学   4篇
物理学   17篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   4篇
  1986年   7篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
2.
Using the approach of Rulla (1996 SIAM J. Numer. Anal. 33, 68-87)for analysing the time discretization error and assuming moreregularity on the initial data, we improve on the error boundderived by Barrett and Blowey (1996 IMA J. Numer. Anal. 16,257-287) for a fully practical piecewise linear finite elementapproximation with a backward Euler time discretization of amodel for phase separation of a multi-component alloy.  相似文献   
3.
4.
5.
6.
7.
As part of a study aimed at better understanding of molecular and dissociative chemisorption of oxygen on Ag(110), linear combinations of Gaussian type orbitals-local spin density (LCGTO -LSD ) calculations have been performed for O, O?, O2, O?2, O2?2 and a variety of silver clusters interacting with O or O2. For atomic O adsorption a very small cluster, Ag4, chosen to model the long-bridge site already affords very good agreement with both recent EXAFS experiments and recent ab initio calculations. We calculate O to be 0.25 Å above the surface (exp. 0.2 Å). The Ag4? O vibrational frequency is estimated to be 400 cm?1, in reasonable accord with the experimental EELS value of 325 cm?1. Determination of the geometry for O2 (ads.) and, ultimately, of the dissociation path are far more difficult tasks. An extensive search for local minima in the vicinity of the LB site is being carried out. Results to date for small, Ag2 and Ag4, clusters have furnished insight into the factors influencing the structure. Overlap between the π* orbital of the O2 moiety and Ag s functions is a key factor; that is, there is an important covalent component of the binding. For geometries with O2 parallel to the surface, this is achieved by twisting the O2 fragment with respect to the [11¯0] grooves (geometries either parallel or perpendicular to the grooves yield zero π‖*?s overlap by symmetry). The structure with O2 perpendicular to the surface also achieves reasonable overlap and lies close in energy to the most stable ‘parallel’ geometry.  相似文献   
8.
Gel systems based on self‐assembled, amphiphilic ABA triblock copolymers in midblock‐selective solvent form stable, spatially extended networks with controllable morphology and tunable viscoelastic behavior. In this work, we systematically evaluate the mechanical properties of these gels using morphology calculations, and a nonequilibrium oscillatory shear technique based on the dissipative particle dynamics (DPD) method. Our simulations demonstrate that low molecular weight triblock copolymers with incompatible blocks self‐assemble into micelles connected with bridges and loop‐like chains comprised of the solvent‐selective polymer midblocks. The fraction of bridges, ?b, generally increases with increasing relative volume of the midblock, x, defined as the ratio of midblock and endblock volumes ( ). For our model, ?b reaches a plateau at approximately x > 9 for a strongly selective solvent. At this limit, the value of ?b increases from 0.40 to about 0.66 as the copolymer concentration, c, increases from 0.2 to 0.5; however, this increase is less significant at higher concentrations. The elastic response of the gel studied here is comparable with the Rouse modulus. The elastic modulus increases with polymer concentration, and it exhibits a broad peak within 6 < x < 12. Finally, we present an approximate method to predict the elastic modulus of unentangled ABA triblock copolymers based solely on the morphology of the micellar gel, which can be gleaned from equilibrium DPD simulations. We demonstrate that our simulation results are in good qualitative agreement with other theoretical predictions and experimental data. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 15–25, 2010  相似文献   
9.
10.
The potential energy surface of un-ionized glycine has been explored with density functional theory. The performance of several nonlocal functionals has been evaluated and the results are presented in the context of available experimental information and post-Hartree–Fock quantum chemical results. The zero-point and thermal vibrational energies along with vibrational entropies play a very important role in determining the relative stability of glycine conformers; the realization of this has led to some revision and reinterpretation of the experimental results. Uncertainties in the vibrational contributions to the energy differences of several tenths of a kilocalorie/mole remain. The uncertainty in the vibrational free energy is even larger, about 1 kcal/mol. In the final analysis, we suggest that the best estimate of the electronic energy difference between the two lowest glycine conformers should be revised downward from 1.4 to 1.0 kcal/mol. Thirteen stationary points on the potential energy surface have been localized. For the majority of these, there is close agreement among various nonlocal density functionals and the post-Hartree–Fock methods. However, the second conformer (IIn), which has a strong hydrogen bond between the hydroxyl hydrogen and the nitrogen of the amine group, presents a distinct challenge. The relative energy of this conformer is extremely sensitive to the basis set, the level of correlation, or the functional used. The widely used BP86, PP86, and BP91 nonlocal functionals overestimate the strength of the hydrogen bond and predict that this conformer is the lowest energy structure. This contradicts both experiment and high-level post-Hartree–Fock studies. The adiabatic connection method (ACM) and the BLYP functional yield the correct order. The ACM method, in particular, gives energies which are in reasonable agreement with MP2, although these are somewhat low as compared with experiment. Based on this study, ACM should perform well for this type of bioorganic application, with typical errors of a few tenths of a kilocalorie/mole and only rarely exceeding 0.5 kcal/mol. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1609–1631, 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号