首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   3篇
晶体学   1篇
  2023年   1篇
  2020年   2篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
This study describes the modulation of tunneling probabilities in molecular junctions by switching one of two parallel intramolecular pathways. A linearly conjugated molecular wire provides a rigid framework that allows a second, cross‐conjugated pathway to be effectively switched on and off by protonation, affecting the total conductance of the junction. This approach works because a traversing electron interacts with the entire quantum‐mechanical circuit simultaneously; Kirchhoff's rules do not apply. We confirm this concept by comparing the conductances of a series of compounds with single or parallel pathways in large‐area junctions using EGaIn contacts and single‐molecule break junctions using gold contacts. We affect switching selectively in one of two parallel pathways by converting a cross‐conjugated carbonyl carbon into a trivalent carbocation, which replaces destructive quantum interference with a symmetrical resonance, causing an increase in transmission in the bias window.  相似文献   
2.
Abstract

The anomalous increase of Kerr effect due to pretransitional fluctuations has been investigated in the SmA phase close to the SmA-SmCα* transition point in antiferroelectric liquid crystals MHPOBC and MHPOCBC. We have developed a Landau theory taking into account the fluctuations and shown that there are two contributions to the Kerr effect. On the basis of theoretical results, the experimental results obtained in MHPOBC and MHPOCBC were discussed and a clear evidence of the fluctuation-induced Kerr effect was presented.  相似文献   
3.
This study describes the modulation of tunneling probabilities in molecular junctions by switching one of two parallel intramolecular pathways. A linearly conjugated molecular wire provides a rigid framework that allows a second, cross-conjugated pathway to be effectively switched on and off by protonation, affecting the total conductance of the junction. This approach works because a traversing electron interacts with the entire quantum-mechanical circuit simultaneously; Kirchhoff's rules do not apply. We confirm this concept by comparing the conductances of a series of compounds with single or parallel pathways in large-area junctions using EGaIn contacts and single-molecule break junctions using gold contacts. We affect switching selectively in one of two parallel pathways by converting a cross-conjugated carbonyl carbon into a trivalent carbocation, which replaces destructive quantum interference with a symmetrical resonance, causing an increase in transmission in the bias window.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号