首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   9篇
物理学   3篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2016年   4篇
  2002年   1篇
  1985年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The electrical conductivity and electrochemical performance of a La0.6Sr0.4CoO3-δ (LSC) cathode produced by a modified citrate-EDTA sol-gel method assisted with activated carbon are characterized for a proton-conducting solid oxide fuel cell (H+??SOFC) application at intermediate temperature. Thermogravimetric analysis revealed that the decomposition of the unrequired intermediate compounds in the precalcined powder was completed at 800?°C. A single LSC perovskite phase was formed at a calcination temperature of 900?°C, as confirmed by X-ray diffraction analysis. The particle size, crystallite size, and BET-specific surface area of the powder are 219–221?nm, 18?nm, and 9.87?m2?g?1, respectively. The high index value of the extent of agglomeration (5.53) showed that the powder was barely agglomerated. Bulk LSC sintered at 1200?°C for 2?h showed the highest direct-current electrical conductivity (σd.c) compared to that of bulk LSC sintered at 1000?°C and 1100?°C. The value of σd.c was affected by the density and porosity of the sintered samples. The area specific resistance (ASR) of screen-printed LSC working on a proton conductor of BaCe0.54Zr0.36Y0.1O2.95 (BCZY) decreased from 5.0?Ω?cm2–0.06?Ω?cm2 as the temperature increased from 500?°C to 800?°C with an activation energy of 1.079?eV. Overall, in this work, the LSC material produced with the aid of activated carbon meet the requirements for the application as a cathode in an intermediate temperature H+-SOFC.  相似文献   
2.
Mahalingam  S.  Abdullah  H.  Shaari  S.  Muchtar  A. 《Ionics》2016,22(10):1985-1997
Ionics - In2O3and In2O3-MWCNTs, thin films were prepared by means of sol-gel spin coating technique for dye-sensitized solar cells (DSSCs). The morphological characteristics of In2O3 and...  相似文献   
3.
Journal of Solid State Electrochemistry - Nickel/scandia-ceria-stabilized-zirconia (Ni/10Sc1CeSZ) cermet is a potential anode for solid oxide fuel cells. The anode powder is prepared through a...  相似文献   
4.
Functional arborescent graft polystyrenes prepared by the “graft-on-graft” technique, involving the iterative grafting of end functional polymer chains onto reactive polymer backbones were synthesized. The zero-generation comb polymers and then the first generation hyperbranched structures were obtained by the coupling reaction of living α-acetal polystyryllithium onto linear or comb chains of poly(chloroethyl vinyl ether) (PCEVE) of controlled D̄P̄n and structure. Both the PS grafts and the PCEVE reactive backbones were synthesized individually by living polymerization techniques. Initiation of styrene polymerization from acetal functionalized lithium derivatives yield the ω-functionalization of all external polystyrene branches. Derivatization of these acetal branch termini allowed the generation of aldehyde, hydroxyl and carboxyl groups as well as the introduction of functional organic molecules at the periphery of the nanoparticles.  相似文献   
5.
Cathode thickness plays a major role in establishing an active area for an oxygen reduction reaction in energy converter devices, such as solid oxide fuel cells. In this work, we prepared SrFe0.9Ti0.1O3−δ–Ce0.8Sm0.2O1.9 composite cathodes with different layers (1×, 3×, 5×, 7×, and 9× layer). The microstructural and electrochemical performance of each cell was then explored through scanning electron microscopy and electrochemical impedance spectroscopy (EIS). EIS analysis showed that the area-specific resistance (ASR) decreased from 0.65 Ωcm2 to 0.12 Ωcm2 with the increase in the number of layers from a 1× to a 7×. However, the ASR started to slightly increase at the 9× layer to 2.95 Ωcm2 due to a higher loss of electrode polarization resulting from insufficient gas diffusion and transport. Therefore, increasing the number of cathode layers could increase the performance of the cathode by enlarging the active area for the reaction up to the threshold point.  相似文献   
6.
Indium oxide-multi-walled carbon nanotubes (In2O3-MWCNTs) were prepared by sol-gel method for DSSCs. The synthesis of indium oxide (In2O3) was carried out by dissolving indium chloride (InCl3) in a solvent of 2-methoxyethanol. Different annealing temperatures of 400, 450, 500, 550, and 600 °C were proposed in this study. The changes in the structural properties were analyzed by means of X-ray diffraction (XRD) and atomic force microscopy (AFM) analysis. The XRD spectrum estimated the average crystallite sizes of 3 nm for each sample. AFM results indicated very rough surface area of the films where it increased linearly from 1.8 to 11 nm as the annealing temperature increases. The In2O3-MWCNTs-based DSSC exhibited good photovoltaic performance with power conversion efficiency (η), photocurrent density (J sc ), open circuit voltage (V oc ), and fill factor (FF) of 1.13 %, 5.5 mA/cm2, 0.53 V, and 0.42, respectively. Even though the film annealed at 450 °C exhibited low τ eff, it achieved the greatest D eff of 29.67 cm2 s?1 which provides an efficient pathway for the photogenerated electrons with minimum electron recombination loss that increased the J sc and V oc in the DSSC. The obtained structural and electron transport analysis was proposed as a suitable benchmark for In2O3-MWCNTs-based dye-sensitized solar cell (DSSCs) application. Hence, this study suggests that the optimum temperature for In2O3-MWCNTs is at annealing temperature of 450 °C prepared via sol-gel method.  相似文献   
7.
Mahalingam  Savisha  Abdullah  Huda  Shaari  Sahbudin  Muchtar  Andanastuti 《Ionics》2016,22(12):2487-2497

A platinum/reduced graphene oxide (Pt/rGO) nanocomposite acting as a counter electrode (CE) was fabricated using a chemical bath deposition method for In2O3-based dye-sensitized solar cell (DSSC) via sol-gel technique. The report analyzes the morphological and electrochemical impedance spectroscopy of the annealing Pt/rGO films at 350, 400, and 450 °C. Micrograph images obtained from field emission scanning electron microscopy demonstrated the annealed films are highly porous. The energy-dispersive X-ray results show that the carbon atoms were homogeneously distributed on the film annealed at 400 °C. A good photovoltaic performance was exhibited with high photocurrent density of 8.1 mA cm−2 and power conversion efficiency (η) of 1.68 % at the Pt/rGO CE annealed at 400 °C. The employed electrochemical impedance spectroscopy analysis quantifies that the Pt/rGO films annealed at 400 °C provide more efficient charge transfer with the lowest effective recombination rate and high electron life time, hence improving the performance of Pt/rGO CE.

  相似文献   
8.
9.
Journal of Sol-Gel Science and Technology - La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) is a perovskite-type oxide that exhibits excellent mixed ionic–electronic conducting properties and is a...  相似文献   
10.
Journal of Solid State Electrochemistry - The effect of current collecting layer (CCL) and cathode functional layer (CFL) thicknesses on the catalytic activity of the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号