首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   9篇
  2011年   1篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
排序方式: 共有9条查询结果,搜索用时 281 毫秒
1
1.
The synthesis, X-ray data, and electronic structures of two manganese(III) 1D polymers ligated by tetrachlorocatechol, [Mn(2)(III)(H(2)L(1))(Cl(4)Cat)(4).2H(2)O](infinity) (1) and [Mn(2)(III)(H(2)L(2))(Cl(4)Cat)(4).2CH(3)CN.2H(2)O](infinity) (2), are reported. The electronic structures of the complexes have been determined by UV-vis-near-IR, IR, electron paramagnetic resonance (EPR), and magnetic susceptibility measurements. Both 1 and 2 are air stable in the solid state and in solution, unlike most of the previously reported o-quinone-chelated transition-metal complexes. Electronic spectroscopy exhibits a strong near-IR band near 1900 nm for both, suggesting the presence of a mixed-valence semiquinone-catecholate oxidation state of the catechol ligands, Mn(2)(III)(Cl(4)Cat)(2)(Cl(4)SQ)(2), together with the pure catecholate forms. The presence of this isomer was further supported by EPR and magnetic susceptibility measurements. The complexes undergo intramolecular electron transfer (valence tautomerism) upon an increase of the temperature involving the equilibrium Mn(2)(III)(Cl(4)Cat)(2)(Cl(4)SQ)(2) <==> Mn(2)(II)(Cl(4)SQ)(4). This phenomenon is reversible and is studied in solution using UV-vis-near-IR spectroscopy.  相似文献   
2.
An N donor tetradentate manganese complex, [MnII(bispicen)Cl2] (A) [bispicen = N,N-bis(2-pyridylmethyl)-1,2-ethanediamine)] catalyses the oxidative cleavage of 4-tert-butylcatechol (1) in the presence of O2. The oxygenated products were isolated by t.l.c. and column chromatography and characterised by 1H-, 13C-n.m.r., DEPT, i.r. and u.v.–vis. spectroscopy. The oxygenated products as well as other spectral evidence suggest that the oxygenation occurs via a 4-tert-butylsemiquinone bound complex, [MnII(bispicen)(4-sq)]+ (4-sq = 4-tert-butylsemiquinone). 1H-n.m.r. spectroscopy suggests that the oxygenation follows multiple pathways. Isolation of the products suggests that the oxygenations proceed in an extradiol fashion and a probable mechanism is suggested. Some intradiol cleaved products have also been detected. E.s.r. spectroscopy suggests that manganese(II) is ultimately converted into the manganese(IV) species.  相似文献   
3.
Panja A  Matsuo T  Nagao S  Hirota S 《Inorganic chemistry》2011,50(22):11437-11445
We synthesized a new photoactive dinuclear zinc(II) complex by linking two zinc centers with a ligand containing an azobenzene chromophore and investigated the DNA cleavage activities of its trans and cis forms. The trans structure of the dinuclear zinc complex was determined by X-ray crystallography, where each zinc center is situated in an octahedral coordination environment comprised of three nitrogen atoms from the ligand and three oxygen atoms from two nitrate ions. The dinuclear zinc complex containing the azobenzene chromophore was photoisomerizable between the trans and cis forms. The binding affinities of the trans and cis complexes with calf thymus (CT)-DNA were similar. Although the DNA cleavage activity of the trans complex was negligible, the cis complex was able to cleave DNA. We attribute the efficient activity of the cis complex to the cooperation of the two closely located zinc centers and the inactivity of the trans complex to the two metal centers positioned far away from each other. The DNA cleavage activity of the cis complex exhibited a pH-dependent bell-shaped profile, which has been observed in the hydrolytic cleavage of DNA by zinc complexes. The DNA cleavage activity was not inhibited by a major groove binder, methyl green, but decreased significantly by a minor groove binder, 4',6-diamidino-2-phenylindole, indicating that the dinuclear zinc complex binds to the minor groove of DNA. The present work shows the importance of the cooperation of two zinc ions for hydrolytic DNA cleavage, which can be photoregulated by linking the two metal centers with a photoisomerizable spacer, such as an azobenzene chromophore.  相似文献   
4.
A layered mixed-valence manganese complex, [Mn(II)(2)(bispicen)(2)(mu(3)-Cl)(2)Mn(III)(Cl(4)Cat)(2)Mn(III)(Cl(4)Cat)(2)(H(2)O)(2)](infinity), is synthesized and characterized structurally. It displays a slow magnetic relaxation and hysteresis effect.  相似文献   
5.
A comparative kinetic study of the reactions of two mixed valence manganese(III,IV) complexes of macrocyclic ligands, [L1MnIV(O)2MnIIIL1], 1 (L1 = 1,4,8,11‐tetraazacyclotetradecane) and [L2MnIV(O)2MnIIIL2], 2 (L2 = 1,4,7,10‐tetraazacyclododecane) with thiosulfate has been carried out by spectrophotometry in aqueous buffer at 30°C. Reaction between complex 1 and thiosulfate follows a first‐order rate saturation kinetics. The pH dependency and kinetic evidences suggest the participation of two complex species of MnIII(μ‐O)2MnIV under the experimental conditions. Detailed kinetic study shows that reduction of 2 proceeds through an autocatalytic path where the intermediate (MnIII)2 species has been assumed to catalyze the reaction. The difference in the reaction mechanisms is ascribed to the difference in stability of the intermediate complex species, the evidence for which comes from the electrochemical behavior of the complexes and time dependent EPR spectroscopic measurements during the reduction of 2 . © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 119–128, 2004  相似文献   
6.
The semiquinone-catecholate based mixed valence complex, [FeIII(bispicen)(Cl4Cat)(Cl4SQ)] x DMF (1), and catecholate based (H2bispictn)[Mn2III(Cl4Cat)4(DMF)2] (2) (bispicen = N,N'-bis(2-pyridylmethyl)-1,2-ethanediamine, bispictn = N,N'-bis(2-pyridylmethyl)-1,3-propanediamine, Cl4Cat = tetrachlorocatecholate dianion, and Cl4SQ = tetrachlorosemiquinone radical anion) were synthesized directly utilizing a facile route. Both the complexes have been characterized by single crystal X-ray diffraction study. The electronic structures have been elucidated by UV-vis-NIR absorption spectroscopy, cyclic voltammetry, EPR, and magnetic properties. The structural as well as spectroscopic features support the mixed valence tetrachlorosemiquinone-tetrachlorocatecholate charge distribution in 1. The ligand based mixed valence state was further confirmed by the presence of an intervalence charge transfer (IVCT) band in the 1900 nm region both in solution and in the solid. The intramolecular electron transfer, a phenomenon known as valence tautomerism (VT), has been followed by electronic absorption spectroscopy. For 1, the isomeric form [FeIII(bispicen)(Cl4Cat)(Cl4SQ)] is favored at low temperature, while at an elevated temperature, the [FeII(bispicen)(Cl4SQ)2] redox isomer dominates. Infrared as well as UV-vis-NIR spectral characterization for 2 suggest that the MnIII(Cat)2- moiety is admixed with its mixed valence semiquinone-catecholate isomer MnII(SQ)(Cat)-, and the electronic absorption spectrum is dominated by the mixed charged species. The origin of the intervalence charge transfer band in the 1900 nm range is associated with the mixed valence form, MnII(Cl4Cat)(Cl4SQ)-. The observation of VT in complex 1 is the first example where a mixed valence semiquinone-catecholate iron(III) complex undergoes intramolecular electron transfer similar to manganese and cobalt complexes.  相似文献   
7.
The reaction of copper chloride dihydrate and ferric chloride hexahydrate with a tripodal N4 ligand (ntb) under mild conditions affords two novel complexes [Cu(ntb)Cl]2[CuCl4] · 2H2O (1) and [Fe(ntb)Cl2]Cl · 3H2O (2). The reaction of ferric chloride with another N4 ligand, bispicpn, forms an octahedral mononuclear complex, [Fe(bispicpn)Cl2]Cl (3). Single-crystal X-ray structural studies of 1, 2 and 3 reveal the formation of hydrogen-bond sustained 3D, 2D and 1D networks, respectively, involving (N–HO) and (N–HCl) interactions. The packing arrangement in 2 further reveals the existence of hexagonal channels with helical propagation along the diagonal of the crystallographic b- and c-axes. The reactions of these complexes with 3,5-di-tert-butylcatechol have been studied in dimethylformamide. NMR techniques have been used to identify the reaction products.  相似文献   
8.
Kinetic studies on the oxidation of 2‐mercaptosuccinic acid by dinuclear [Mn2III/IV(μ‐O)2(cyclam)2](ClO4)3] ( 1 ) (abbreviated as MnIII–MnIV) (cyclam = 1,4,8,11‐tetraaza‐cyclotetradecane) have been carried out in aqueous medium in the pH range of 4.0–6.0, in the presence of acetate buffer at 30°C by UV–vis spectrophotometry. In the pH region, two species of complex 1 (MnIII–MnIV and MnIII–MnIVH, the later being μ‐O protonated form) were found to be kinetically significant. The first‐order dependence of the rate of the reactions on [Thiol] both in presence and absence of externally added copper(II) ions, first‐order dependence on [Cu2+] and a decrease of rate of the reactions with increase in pH have been rationalized by suitable sequence of reactions. Protonation of μ‐O bridge of 1 is evidenced by the perchloric acid catalyzed decomposition of 1 to mononuclear Mn(III) and Mn(IV) complex observed by UV–vis and EPR spectroscopy. The kinetic features have been rationalized considering Cu(RSH) as the reactive intermediate. EPR spectroscopy lends support for this. The formation of a hydrogen bonded outer‐sphere adduct between the reductant and the complex in the lower pH range prior to electron transfer reactions is most likely to occur. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 170–177 2004  相似文献   
9.
A comparative kinetic study of the reactions of two mixed valence manganese(III,IV) complexes with macrocyclic ligands, [L1MnIV(O)2MnIIIL1], 1 (L1 = 1,4,7,10‐tetraazacyclododecane) and [L2MnIV(O)2MnIIIL2], 2 (L2 = 1,4,8,11‐tetraazacyclotetradecane) with 2‐mercaptoethanol (RSH) has been carried out by spectrophotometry in aqueous buffer at (30 ± 0.1)°C. Rate of the reactions between the oxidants and the reductant was found to be negligibly slow with no systematic dependence on either redox partners. Externally added copper(II) (usually 5 × 10?7 mol dm?3), however, increases the rate of the reduction of 1 and 2 significantly. In the presence of catalytic amount of copper(II), the rate of the reaction is nearly proportional to [RSH] at lower concentration of the reductant but follows a saturation kinetics at higher concentration of the latter for the reaction between 1 and the thiol. Reaction rate was found to be strongly influenced by the variation of acidity of the medium and the observed kinetics suggests that the two reductant species ([Cu(RSH)]2+ and [Cu(RS)]+) are significant for the reaction between 1 and the thiol. The dependence of the rate on [RSH] for the reduction of 2 by the thiol was complex and rationalized considering two equilibria involving the catalyst (Cu2+) and the reductant. The pH rate profile suggests that both the μ‐O protonated [MnIII(O)(OH)MnIV] and the deprotonated [MnIII(O)2MnIV] forms of the oxidant 2 become important. The kinetic results presented in this study indicate the domination of outer‐sphere path. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 129–137, 2004  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号