首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1317009篇
  免费   29505篇
  国内免费   7749篇
化学   655272篇
晶体学   20323篇
力学   74235篇
综合类   103篇
数学   239836篇
物理学   364494篇
  2021年   13448篇
  2020年   15875篇
  2019年   16008篇
  2018年   12689篇
  2016年   27663篇
  2015年   20695篇
  2014年   30274篇
  2013年   74066篇
  2012年   36668篇
  2011年   32954篇
  2010年   36649篇
  2009年   39132篇
  2008年   32818篇
  2007年   28322篇
  2006年   34556篇
  2005年   27295篇
  2004年   28486篇
  2003年   27156篇
  2002年   28333篇
  2001年   26582篇
  2000年   23785篇
  1999年   22033篇
  1998年   20784篇
  1997年   20798篇
  1996年   20995篇
  1995年   19079篇
  1994年   18502篇
  1993年   18071篇
  1992年   17815篇
  1991年   18155篇
  1990年   17385篇
  1989年   17418篇
  1988年   17010篇
  1987年   17027篇
  1986年   15927篇
  1985年   22368篇
  1984年   23670篇
  1983年   19876篇
  1982年   21579篇
  1981年   20822篇
  1980年   20171篇
  1979年   20288篇
  1978年   21616篇
  1977年   21207篇
  1976年   20900篇
  1975年   19639篇
  1974年   19239篇
  1973年   19768篇
  1972年   14257篇
  1967年   12488篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
1.
Employing radical bridges between anisotropic metal ions has been a viable route to achieve high-performance single-molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal-field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N -radical-bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N -radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange-coupled SMMs.  相似文献   
2.
3.
4.
5.
A liquid dewetting method for the determination of the viscoelastic properties of ultrathin polymer films has been extended to study thickness effects on the properties of ultrathin polycarbonate (PC) films. PC films with film thicknesses ranging from 4 to 299 nm were placed on glycerol at temperatures from below the macroscopic glass transition temperature (Tg) to above it with the dewetting responses being monitored. It is found that the isothermal creep results for films of the same thickness, but dewetted at different temperatures can be superposed into one master curve, which is consistent with the fact of PC being a thermorheologically simple material. Furthermore, the results show that the Tg of PC thin films is thickness dependent, but the dependence is weaker than the results for freely standing films and similar to literature data for PC films supported on rigid substrates. It was also found that the rubbery plateau region for the PC films stiffens dramatically, but still less than what has been observed for freely standing polycarbonate films. The rubbery stiffening is discussed in terms of a recently reported model that relates macroscopic segmental dynamics with the stiffening. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1559–1566  相似文献   
6.
7.
Given their superior penetration depths, photosensitizers with longer absorption wavelengths present broader application prospects in photodynamic therapy (PDT). Herein, Ag2S quantum dots were discovered, for the first time, to be capable of killing tumor cells through the photodynamic route by near-infrared light irradiation, which means relatively less excitation of the probe compared with traditional photosensitizers absorbing short wavelengths. On modification with polydopamine (PDA), PDA-Ag2S was obtained, which showed outstanding capacity for inducing reactive oxygen species (increased by 1.69 times). With the addition of PDA, Ag2S had more opportunities to react with surrounding O2, which was demonstrated by typical triplet electron spin resonance (ESR) analysis. Furthermore, the PDT effects of Ag2S and PDA-Ag2S achieved at longer wavelengths were almost identical to the effects produced at 660 nm, which was proved by studies in vitro. PDA-Ag2S showed distinctly better therapeutic effects than Ag2S in experiments in vivo, which further validated the enhanced regulatory effect of PDA. Altogether, a new photosensitizer with longer absorption wavelength was developed by using the hitherto-unexplored photodynamic function of Ag2S quantum dots, which extended and enhanced the regulatory effect originating from PDA.  相似文献   
8.
Incorporating nanoscale Si into a carbon matrix with high dispersity is desirable for the preparation of lithium-ion batteries (LIBs) but remains challenging. A space-confined catalytic strategy is proposed for direct superassembly of Si nanodots within a carbon (Si NDs⊂C) framework by copyrolysis of triphenyltin hydride (TPT) and diphenylsilane (DPS), where Sn atomic clusters created from TPT pyrolysis serve as the catalyst for DPS pyrolysis and Si catalytic growth. The use of Sn atomic cluster catalysts alters the reaction pathway to avoid SiC generation and enable formation of Si NDs with reduced dimensions. A typical Si NDs⊂C framework demonstrates a remarkable comprehensive performance comparable to other Si-based high-performance half LIBs, and higher energy densities compared to commercial full LIBs, as a consequence of the high dispersity of Si NDs with low lithiation stress. Supported by mechanic simulations, this study paves the way for construction of Si/C composites suitable for applications in future energy technologies.  相似文献   
9.
Physics of Particles and Nuclei Letters - When creating accelerators and storage-ring installations in a compact space, there is not always enough space for all the necessary magnet elements. In...  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号