首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
化学   23篇
力学   1篇
  2022年   2篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
排序方式: 共有24条查询结果,搜索用时 46 毫秒
1.
For the first time, a polypyrrole–carbon nanotubes–silicon dioxide composite film coated on a steel wire was prepared by an electrochemical method. Scanning electron microscopy images showed that this composite film was even and porous. The prepared fiber was used as an absorbent for the headspace solid‐phase microextraction of benzene, toluene, ethylbenzene, and o‐xylene, followed by gas chromatographic analysis. This method presented an excellent performance, which was much better than that of a polypyrrole–carbon nanotube fiber. It was found that under the optimized conditions, the linear ranges were 0.01–200 ng/mL with correlation coefficients >0.9953, the detection limits were 0.005–0.020 ng/mL, the relative standard deviations were 3.9–6.4% for five successive measurements with a single fiber, and the reproducibility was 5.5–8.5% (n = 3). Finally, the developed method was successfully applied to real water samples, and the relative recoveries obtained for the spiked water samples were from 91.0 to 106.7%.  相似文献   
2.
ABSTRACT

In this work, the magnetic sorbent was developed by covalent binding of a Schiff base ligand, N,N’-bis(3-salicyliden aminopropyl)amine (salpr), on the surface of silica coated magnetic nanoparticles (Salpr@SCMNPs). The core-shell nanoparticle was applied for the magnetic solid-phase extraction (MSPE) combined with dispersive liquid-liquid microextraction (DLLME) of phenolic compounds from water samples prior to gas chromatography-flame ionisation detector (GC?FID). Characterisation of the Salpr@SCMNPs was performed with different physicochemical methods such as Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). Variables affecting the performance of both extraction steps such as pH of the water sample, the sorbent amount, the desorption conditions, the extraction time; and extraction solvent were studied. Under the optimised conditions, the analytical performances were determined with a linear range of 0.01–100 ng mL?1 and a limit of detection at 0.003–0.02 ng mL?1 for all of the analytes studied. The intra-day (n = 5) and inter-day (n = 3) relative standard deviations (RSD%) of three replicates were each demonstrated in the range of 6.9–8.9% and 7.3–10.1%, respectively. The proposed method was executed for the analysis of real water samples, whereby recoveries in the range of 92.9–99.0% and RSD% lower than 6.1% were attained.  相似文献   
3.
Microchimica Acta - We have prepared a new material for solid-phase microextraction (SPME) of volatile aromatic hydrocarbons by electropolymerization of pyrrole, carbon nanotubes, and titanium...  相似文献   
4.
A magnetic sorbent was fabricated by coating the magnetized graphene oxide with polystyrene (PS) to obtain a sorbent of the type GO-Fe3O4@PS. The chemical composition and morphology of the sorbent were characterized. The sorbent was employed for the enrichment of polycyclic aromatic hydrocarbons (PAHs) from water samples. Various parameters affecting the enrichment were investigated. The PAHs were then quantified by gas chromatography with flame ionization detection. Linear responses were found in the range of 0.03–100 ng mL?1 for naphthalene and 2-methylnaphthalene, and of 0.01–100 ng mL?1 for fluorene and anthracene. The detection limits (at an S/N ratio of 3) range between 3 and 10 pg mL?1. The relative standard deviations (RSDs) for five replicates at three concentration levels (0.05, 5 and 50 ng mL?1) of analytes ranged from 4.9 to 7.4%. The method was applied to the analysis of spiked real water samples. Relative recoveries are between 95.8 and 99.5%, and RSD% are <8.4%.
Graphical abstract A magnetic sorbent was fabricated by polystyrene coated on the magnetic graphene oxide for the extraction and preconcentration of PAHs in water samples prior to their determination by gas chromatography with flame ionization detection.
  相似文献   
5.
In this study, poly(ethylene glycol) (PEG) grafted multi-walled carbon nanotubes (PEG-g-MWCNTs) were synthesized by the covalent functionalization of MWCNTs with hydroxyl-terminated PEG chains. PEG-g-MWCNTs was used as a novel stationary phase to prepare the sol–gel solid-phase microextraction (SPME) fiber in combination with gas chromatography–flame ionization detector (GC–FID) for the determination of ibuprofen, naproxen and diclofenac in real water samples.  相似文献   
6.
We describe a magnetic nanocomposite that consists of Fe3O4/carbon nanosphere/polypyrrole (Fe3O4/CNS/PPy). The synthesized nanocomposites were characterized by scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. The nanocomposite was successfully applied to extract of the polycyclic aromatic hydrocarbons (PAHs) from water samples. Compared to Fe3O4/PPy, the Fe3O4/CNS/PPy nanocomposite exhibits improved properties in terms of extraction. The amount of adsorbent, salt effect, extraction time, desorption time, type, and the volume of desorption solvent were optimized. Following the desorption of the extracted analytes, the PAHs (i.e., naphthalene, 2-methylnaphthalene, 2-bromonaphthalene, fluorene, and anthracene) were quantified by gas chromatography–flame ionization detector. The PAHs can be determined in 0.05–100.00 ng mL?1 concentration range, with limits of detection (at an S/N ratio of 3) ranging from 0.01 to 0.05 ng mL?1. The repeatability of the method was investigated with relative standard deviations of lower than 9.9% (n = 5). Also, the recoveries from spiked real water samples were in the range of 88.9–99.0%. The results indicate that the novel material can be successfully applied for the extraction and analysis of PAHs from water samples.  相似文献   
7.
Polypyrrole (PPY)/Fe3O4/CNT has been synthesized and characterized by FT‐IR, TEM and SEM techniques and its catalytic activity has been evaluated in the synthesis of several series of pyran derivatives. Tetrahydrobenzo[b]pyranes, 4H‐pyran‐3‐carboxylates, 4H,5H‐pyrano[3,2‐c]chromenes and dihydropyrano[2,3‐c]pyrazoles have been successfully prepared from one‐pot three‐component condensation of aldehyde, malononitrile and active methylene‐containing compounds (dimedone /ethyl acetoacetate/4‐hydroxycoumarin/3‐methyl‐2‐pyrazoline‐5‐one) using PPY/Fe3O4/CNT as a new and reusable heterogeneous catalyst. The present method offer several advantages such as; high yields of products, short reaction times, easy work‐up procedure and easy separation of the catalyst from the reaction mixture due to its magnetic character. Furthermore, chemoselective synthesis of bis‐benzo[b]pyran from terephthalaldehyde can be achieved by this method.  相似文献   
8.
9.
10.
Amiri  Amirhassan  Ghaemi  Ferial 《Mikrochimica acta》2017,184(10):3851-3858
Microchimica Acta - Microextraction in packed syringe (MEPS) was combined with dispersive liquid-liquid microextraction (DLLME) for the extraction of phthalate esters (PEs) from water samples prior...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号