首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
化学   14篇
数学   5篇
物理学   6篇
  2014年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1974年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
2.
The mid-infrared spectra of the polycyclic aromatic hydrocarbon (PAH) cations of the tetracyclic isomers chrysene (C18H12+) and 1,2-benzanthracene (C18H12+) are presented. As with previous PAH cations studied to date, the CC stretching and CH in-plane bending mode absorptions are about an order of magnitude stronger than the aromatic CH out-of-plane bending absorptions and nearly 2 orders of magnitude more intense than the corresponding bands in the neutral molecule. The CH bands arising from the out-of-plane bends in the cation are slightly weaker than the corresponding bands in the neutral species. The strongest cation bands of these species fall between 1300 and 1330 cm-1, close to the peak of the most intense interstellar emission feature in HII regions and reflection nebulae. A strong PAH cation band at slightly higher frequency than 1300 cm-1 may be associated with an asymmetric CC stretching vibration involving rings adjacent to the kink in the chain of aromatic rings.  相似文献   
3.
Polycyclic aromatic hydrocarbon (PAH) molecules undergo facile ionization in cryogenic water-ices resulting in near quantitative conversions of neutral molecules to the corresponding singly charged radical cations. Here we report, for the first time, the production and stabilization of a doubly ionized, closed shell PAH in water-ice. The large PAH quaterrylene (QTR, C40H20) is readily photoionized and stabilized as QTR 2+ in a water-ice matrix at 20 K. The kinetic analysis of photolysis shows that the QTR 2+ is formed at the expense of QTR +, not directly from QTR. The long-axis polarized S1-S0 (1(1)B(3u) <-- 1(1)Ag) transition for QTR 2+ falls at 1.59 eV (782 nm). TD-DFT calculations at the B3LYP level predict that this transition falls at 1.85 eV (670 nm) for free gas-phase QTR 2+, within the 0.3 eV uncertainty associated with these calculations. This red shift of 0.26 eV is quite similar to the 0.24 eV red shift between the TD-DFT computational prediction for the lowest energy transition for QTR + (1.68 eV) and its value in a water matrix (1.44 eV). These results suggest that multiple photoionization of such large PAHs in water-ice can be an efficient process in general.  相似文献   
4.
The infrared spectra of six molecules, each of which contains a five-membered ring, and their cations are determined using density functional theory; both the B3LYP and BP86 functionals are used. The computed results are compared with the experimental spectra. For the neutral molecules, both methods are in good agreement with experiment. Even the Hartree–Fock (HF) approach is qualitatively correct for the neutral species. For the cations, the HF approach fails, as found for other organic ring systems. The B3LYP and BP86 approaches are in good mutual agreement for five of the six cation spectra, and are in good agreement with experiment for four of the five cations where the experimental spectra are available. It is only for the fluoranthene cation where the BP86 and B3LYP functionals yield different results; the BP86 approach yields the expected C 2 v symmetry, while the B3LYP approach breaks symmetry. The experimental spectra support the BP86 spectra over the B3LYP spectra, but the quality of the experimental spectra does not allow a critical evaluation of the accuracy of the BP86 approach for this difficult system. Received: 9 February 1999 / Accepted: 31 March 1999 / Published online: 14 July 1999  相似文献   
5.
Ionized polycyclic aromatic hydrocarbons (PAHs) are thought to constitute an important component of the interstellar medium. Despite this fact, the infrared spectroscopic properties of ionized PAHs are almost unknown. The results we present here derive from our ongoing spectroscopic study of matrix isolated PAH ions and include the spectra of the naphthalene cation, C10H8+, and its fully deuterated analog, C10D8+, between 4000 and 200 cm-1. Ions are generated in situ Lyman-alpha photoionization of the neutral precursor. Bands of the C10H8+ ion are observed at 1525.7, 1518.8, 1400.9, 1218.0, 1216.9, 1214.9, 1023.2, and 758.7 cm-1. Positions and relative intensities of these bands agree well with those in the available literature. The 758.7 cm-1 band has not previously been reported. C10D8+ ion bands appear at 1466.2, 1463.8, 1379.4, 1373.8, 1077.3, 1075.4, and 1063.1 cm-1. Compared to the analogous modes in the neutral molecule, the intensities of the cation's CC modes are enhanced by an order of magnitude, while CH modes are depressed by this same factor. Integrated absorption intensities are calculated for the strongest bands of C10H8 and for the observed bands of C10H8+. Absolute intensities derived for the naphthalene cation differ from earlier experimental results by a factor of approximately 50, and from theoretical predictions by a factor of approximately 300. Reasons for these discrepancies and from the astronomical implications of PAH cation spectra are discussed.  相似文献   
6.
Gaseous, ionized polycyclic aromatic hydrocarbons (PAHs) are thought to be responsible for a very common family of interstellar infrared emission bands. Unfortunately, very little infrared spectroscopic data are available on ionized PAHs. Here we present the near- and mid-infrared spectra of the polyacene cations anthracene, tetracene, and pentacene. We also report the vibrational frequencies and relative intensities of the pentacene anion. The cation bands corresponding to the CC modes are typically about 10-20 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 3-20 times weaker than in the neutral species. This behavior is similar to that found for most other PAH cations. The most intense PAH cation bands fall within the envelopes of the most intense interstellar features. The strongest absorptions in the polyacenes anthracene, tetracene, and pentacene tend to group around 1400 cm-1 (between about 1340 and 1500 cm-1) and near 1180 cm-1, regions of only moderate interstellar emission. These very strong polyacene bands tend to fall in gaps in the spectra of the other PAH cations studied to date suggesting that while PAHs with polyacene structures may contribute to specific regions of the interstellar emission spectra, they are not dominant members of the interstellar PAH family.  相似文献   
7.
8.
A new diiodine substituted IDA derivative, 2,4-diiodine-6-methyl IDA (DIIODIDA) was synthesized and labeled with99mTc. It was established that99mTc-DIIODIDA had high radiochemical purity. Biodistribution and influence of bilirubin on99mTc-DIIODIDA biokinetics has been studied in rats and compared to the corresponding results for99mTc-SOLCOIODIDA. Related to99mTc-SOLCOIODIDA,99mTc-DIIODIDA has much better biliary exretion (55.18 versus 43.63%). No change of99mTc-DIIODIDA biokinetics, under influence of bilirubin was noticed. Biliary excretion of99mTc-SOLCOIODIDA has been reduced for about 60%. The protein binding of99mTc-DIIODIDA and99mTc-SOLCOIODIDA were also determined, using in vitro method of precipitation. These results showed that99mTc-DIIODIDA hepatobiliary imaging agent is superior to the presently used99mTc-monoiodine IDA derivatives.  相似文献   
9.
章新友  L.J. Li  黄永畅 《物理学报》2014,63(19):190301-190301
本文获得了有各种相互作用的一般n阶特征量泛函,其耦合系数反映了不同特征量泛函之间的耦合强度.依据定量因果原理,导出了一般n阶特征量泛函的变分原理,获得了一般n阶特征量泛函的Euler-Lagrange方程,它的不同系数可拟合不同的物理现实,如从线性到任意n阶非线性物理系统,使复杂难解的任意n阶非线性物理系统变得具体可解.并获得了该对称变换下不变的m个的守恒量,以及它们之间的关系和统一描述.依据定量因果原理导出了相对性原理,证明了绝对加速参考系、牵连参考系和相对参考系的力都有来自加速度和质量变化的贡献.利用定量因果原理自然导出了广义牛顿第一定律和广义牛顿第二定律,而且还导出了一个新定律,即广义牛顿第三定律,亦即平移不变性系统合力为零定理.进而将研究结论应用于对银河系的修正引力势、分子势、夸克禁闭势等,且其结果与物理实验一致.  相似文献   
10.
The ultraviolet, visible, and near infrared absorption spectra of phenanthrene (C14H10), 1-methylphenanthrene [(CH3)C14H9], and their radical ions [C14H10+; (CH3)C14H9+], formed by vacuum-ultraviolet irradiation, were measured in neon matrices at 4.2 K. The associated vibronic band systems and their spectroscopic assignments are discussed. The oscillator strengths were calculated for the phenanthrene ion and found lower than the theoretical predictions. This study presents the first spectroscopic data for phenanthrene and its methyl derivative trapped in a neon matrix where the perturbation of the isolated species by its environment is minimum; a condition crucial to astrophysical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号