首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9137篇
  免费   284篇
  国内免费   32篇
化学   6113篇
晶体学   60篇
力学   286篇
综合类   1篇
数学   1230篇
物理学   1763篇
  2023年   70篇
  2022年   126篇
  2021年   292篇
  2020年   193篇
  2019年   193篇
  2018年   188篇
  2017年   175篇
  2016年   371篇
  2015年   295篇
  2014年   320篇
  2013年   565篇
  2012年   631篇
  2011年   674篇
  2010年   483篇
  2009年   452篇
  2008年   612篇
  2007年   573篇
  2006年   441篇
  2005年   386篇
  2004年   327篇
  2003年   290篇
  2002年   233篇
  2001年   173篇
  2000年   147篇
  1999年   104篇
  1998年   94篇
  1997年   79篇
  1996年   92篇
  1995年   69篇
  1994年   65篇
  1993年   64篇
  1992年   57篇
  1991年   52篇
  1990年   40篇
  1989年   34篇
  1988年   36篇
  1987年   25篇
  1986年   33篇
  1985年   51篇
  1984年   41篇
  1983年   31篇
  1982年   24篇
  1981年   24篇
  1980年   39篇
  1979年   19篇
  1978年   31篇
  1976年   20篇
  1975年   20篇
  1974年   14篇
  1973年   18篇
排序方式: 共有9453条查询结果,搜索用时 31 毫秒
1.
2.
Herein, we report a Mott-Schottky catalyst by entrapping cobalt nanoparticles inside the N-doped graphene shell (Co@NC). The Co@NC delivered excellent oxygen evolution activity with an overpotential of merely 248 mV at a current density of 10 mA cm–2 with promising long-term stability. The importance of Co encapsulated in NC has further been demonstrated by synthesizing Co nanoparticles without NC shell. The synergy between the hexagonal close-packed (hcp) and face-centered cubic (fcc) Co plays a major role to improve the OER activity, whereas the NC shell optimizes the electronic structure, improves the electron conductivity, and offers a large number of active sites in Co@NC. The density functional theory calculations have revealed that the hcp Co has a dominant role in the surface reaction of electrocatalytic oxygen evolution, whereas the fcc phase induces the built-in electric field at the interfaces with N-doped graphene to accelerate the H+ ion transport.  相似文献   
3.
A temperature control unit was implemented to vary the temperature of samples studied on a commercial Mobile Universal Surface Explorer nuclear magnetic resonance (MOUSE-NMR) apparatus. The device was miniaturized to fit the maximum MOUSE sampling depth (25 mm). It was constituted by a sample holder sandwiched between two heat exchangers placed below and above the sample. Air was chosen as the fluid to control the temperature at the bottom of the sample, at the interface between the NMR probe and the sample holder, in order to gain space. The upper surface of the sample was regulated by the circulation of water inside a second heat exchanger placed above the sample holder. The feasibility of using such a device was demonstrated first on pure water and then on several samples of bread dough with different water contents. For this, T1 relaxation times were measured at various temperatures and depths and were then compared with those acquired with a conventional compact closed-magnet spectrometer. Discussion of results was based on biochemical transformations in bread dough (starch gelatinization and gluten heat denaturation). It was demonstrated that, within a certain water level range, and because of the low magnetic field strength of the MOUSE, a linear relationship could be established between T1 relaxation times and the local temperature in the dough sample.  相似文献   
4.
5.
6.
A sensitive, specific and reproducible HPLC method has been developed and validated for the quantitative determination of 6‐methylcoumarin (6MC) in plasma and other tissues in Wistar rats. A C18 column was used with UV detection at 321 nm and a gradient system consisting of methanol‐deionized water was used as mobile phase. The retention time for 6MC was 14.921 min and no interfering peaks were observed for any of the matrices. Linear relationships (r2 > 0.997) were obtained between the peak height ratios and the corresponding biological sample concentrations over the range 0.4–12.8 µg/mL. Precision and accuracy were evaluated; the coefficient of variation and the relative error for all of the organs were <2 and 7%, respectively. The limit of quantitation was 0.20 µg/mL for the heart and 0.30 µg/mL for the other tissues evaluated. This HPLC method was successfully used in the determination of 6MC in the biodistribution study after administration of 200 mg/kg of both 6MC‐free and 6MC‐loaded polymeric microparticles. In this study, extensive 6MC was found, in both free and microencapsulated forms, in all the organs tested. The 6MC‐free showed a range of between 1.7 and 11.5 µg/g, while the microencapsulated 6MC showed concentrations of between 6.35 and 17.7 µg/g, suggesting that 6MC improved absorption rate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
7.
8.
9.
10.
A new amino‐functionalized strontium–carboxylate‐based metal–organic framework (MOF) has been synthesized that undergoes single crystal to single crystal (SC‐to‐SC) transformation upon desolvation. Both structures have been characterized by single‐crystal X‐ray analysis. The desolvated structure shows an interesting 3D porous structure with pendent ?NH2 groups inside the pore wall, whereas the solvated compound possesses a nonporous structure with DMF molecules on the metal centers. The amino group was postmodified through Schiff base condensation by pyridine‐2‐carboxaldehyde and palladium was anchored on that site. The modified framework has been utilized for the Suzuki cross‐coupling reaction. The compound shows high activity towards the C?C cross‐coupling reaction with good yields and turnover frequencies. Gas adsorption studies showed that the desolvated compound had permanent porosity and was microporous in nature with a BET surface area of 2052 m2 g?1. The material also possesses good CO2 (8 wt %) and H2 (1.87 wt %) adsorption capabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号