首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   15篇
  国内免费   5篇
化学   344篇
晶体学   1篇
力学   9篇
数学   46篇
物理学   23篇
  2023年   6篇
  2022年   11篇
  2021年   14篇
  2020年   16篇
  2019年   13篇
  2018年   12篇
  2017年   12篇
  2016年   10篇
  2015年   12篇
  2014年   22篇
  2013年   21篇
  2012年   33篇
  2011年   45篇
  2010年   20篇
  2009年   23篇
  2008年   30篇
  2007年   31篇
  2006年   22篇
  2005年   14篇
  2004年   15篇
  2003年   6篇
  2002年   10篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1986年   1篇
  1983年   2篇
  1975年   1篇
  1970年   1篇
排序方式: 共有423条查询结果,搜索用时 15 毫秒
1.
The aim of this study was to develop an empirical model that provides accurate predictions of the biochemical oxygen demand of the output stream from the aerated lagoon at International Paper of Brazil, one of the major pulp and paper plants in Brazil. Predictive models were calculated from functional link neural networks (FLNNs), multiple linear regression, principal components regression, and partial least-squares regression (PLSR). Improvement in FLNN modeling capability was observed when the data were preprocessed using the PLSR technique. PLSR also proved to be a powerful linear regression technique for this problem, which presents operational data limitations.  相似文献   
2.
In contrast to the classical method where a single molecule is designed to extract metal cations under specific conditions, dynamic covalent chemistry provides an approach based on the implementation of an adaptive dynamic covalent library for inducing the generation of the extractant species. This approach has been applied to the liquid–liquid extraction of copper(ii) nitrate based on a dynamic library of acylhydrazones constituents that self-build and distribute through the interface of a biphasic system. The addition of copper(ii) cations to this library triggers a modification of its composition and the up-regulation of the ligand molecules driven by coordination to the metal cations. Among these, one species has proven to be sufficiently lipophilic to play the role of carrier agent and its formation by component exchange enables the partial extraction of the copper(ii). The study of different pathways to generate the dynamic covalent library demonstrates the complete reversibility and the adaptability of the system. The detailed analytical investigation of the system provides a means to assess the mechanism of the dynamic extraction process.

Phase transfer of Cu(ii) cations is achieved by component exchange in a dynamic covalent library of acylhydrazone ligands. B1/B2 component exchange leads to the generation of a lipophilic carrier agent that extracts Cu(ii) into chloroform.  相似文献   
3.
H3PW12O40/activated carbon catalysts have been studied by microcalorimetry and by the dehydration of methanol to dimethyl ether. It has been shown that the acidity of the polyacid is greatly reduced upon grafting on activated carbon. The decrease is so high that, at low polyanion loadings, the catalysts are relatively inactive in the dehydration of methanol to dimethyl ether.  相似文献   
4.
We have previously used inelastic incoherent neutron scattering spectroscopy to investigate the properties of aqueous suspensions of biomolecules as a function of hydration. These experiments led to the identification of signals corresponding to interfacial (hydration) water at low water content. A prediction from these studies was that in the crowded environment inside living cells, a significant proportion of the water would be interfacial, with profound implications for biological function. Here we describe the first inelastic incoherent neutron scattering spectroscopy studies of living cells and tissues. We find that the interfacial water signal is similar to that observed for water interacting with purified biomolecules and other solutes, i.e., it is strongly perturbed in the librational and translational intermolecular optical regions of the spectrum at 20-150 meV. The ratio of interfacial water compared to total water in cells (approximately 30%) is in line with previous experimental data for hydration water and calculations based on simple assumptions.  相似文献   
5.
Aluminosilicates can present different structures such as crystalline true zeolite molecular sieves or amorphous silica–aluminas. With a large surface area available, both can be involved as catalysts, adsorbents or catalyst supports, and the determination of their surface acidic properties is an important parameter in the study of such materials.

The number, strength and strength distribution of the acidic sites were determined using microcalorimetry linked to a volumetric line. Ammonia was used as a basic probe molecule. The adsorption temperatures ranged from 353 K up to 473 K. The samples consisted of two amorphous silica–aluminas (Si/Al ≈ 6.5) and three microporous zeolites H-β, H-ZSM-5 and H-MCM-22 with similar Si/Al ratios (Si/Al ≈ 13).

The differential heats of ammonia adsorption versus coverage and the corresponding isotherms are given. The H-ZSM-5, H-MCM-22, H-β samples display a plateau of constant adsorption heats near 150 kJ mol−1, while the silica–alumina samples present continuously decreasing heats from 150 kJ mol−1 at zero coverage to 40 kJ mol−1 at high coverage, due to their surface heterogeneity. For amorphous silica–aluminas, the number of acid sites is dependent of the aluminum distribution at the surface.

The differences observed in the adsorption behavior of ammonia over the three zeolites arise from differences in their morphology, i.e. the total free volumes, pore geometries and electric field gradients at the adsorption sites. The adsorption isosteres have also been calculated from the adsorption isotherms, and the isosteric heats of adsorption have been compared with the heats measured by calorimetry.  相似文献   

6.
Lima EC  Barbosa F  Krug FJ  Tavares A 《Talanta》2002,57(1):177-186
A tungsten-rhodium treatment on the integrated platform of a transversely heated graphite atomiser was used as a permanent chemical modifier for the determination of copper in biological materials by using digested samples as well as slurry sampling in electrothermal atomic absorption spectrometry. The W-Rh permanent modifier was as efficient as Pd+Mg(NO(3))(2) conventional modifier for obtaining good Cu thermal stabilisation in the digested and slurry samples. The permanent W-Rh modifier remained stable by approximately 300 and 250 firings when 20 mul of digested sample and 20 mul of slurry were delivered into the atomiser, respectively. In addition, the permanent modifier increased the tube lifetime up to 1370 and 744 analytical measurements in the digested and slurry samples, respectively. Also, when the W-Rh permanent modifier was employed, there was less variation of the slope of the analytical curves during the total atomiser lifetime, resulting in a decreased need of re-calibration during routine analysis, increasing the sample throughput, and consequently diminishing the variable analytical costs. Detection limits obtained with W-Rh permanent modifier were 0.64 and 0.33 mug g(-1) Cu for digested (dilution factor 100 ml g(-1)) and 1.0% m/v slurries of biological materials, respectively. Results for the determination of copper in the samples were in agreement with those obtained with decomposed sample solutions by using Pd+Mg(NO(3)), since no statistical differences were found after applying the paired t-test at the 95% level.  相似文献   
7.
Copper ion-exchanged ZSM5 zeolites have been prepared with different cooper loadings from under- to over-exchanged levels. The adsorptions of N2O and CO at 303 K have been studied using calorimetric method and infrared spectroscopy. The samples were additionally characterised by ammonia adsorption at 423 K. The active sites for both N2O and CO are Cu(I) ions, which were formed as a result of pre-treatment in vacuum at 673 K.

Room temperature adsorption of nitrous oxide at low equilibrium pressures (up to 66.7 Pa) resulted in small amounts of chemisorbed N2O (<0.2 molecule per one Cu ion). Differential heats of N2O adsorption between 80 and 30 kJ/mol were obtained. Differential heats of CO adsorption between 140 and 40 kJ/mol were obtained. The obtained amounts of chemisorbed species in the investigated systems and the values of differential heats of both nitrous oxide and carbon monoxide demonstrate the dependence on the copper content.  相似文献   

8.
Bringing quantum science and technology to the space frontier offers exciting prospects for both fundamental physics and applications such as long-range secure communication and space-borne quantum probes for inertial sensing with enhanced accuracy and sensitivity. But despite important terrestrial pathfinding precursors on common microgravity platforms and promising proposals to exploit the significant advantages of space quantum missions, large-scale quantum test beds in space are yet to be realised due to the high costs and lead times of traditional ‘Big Space’ satellite development. But the ‘small space’ revolution, spearheaded by the rise of nanosatellites such as CubeSats, is an opportunity to greatly accelerate the progress of quantum space missions by providing easy and affordable access to space and encouraging agile development. We review space quantum science and technology, CubeSats and their rapidly developing capabilities and how they can be used to advance quantum satellite systems.  相似文献   
9.
The objective of this work was to prepare novel conductive blends of poly(vinylidene fluoride) (PVDF) with polypyrrole (PPy) and to compare their performance with PVDF/multiwall carbon nanotube (MWCNT) composites and novel PVDF/PPy/MWCNT hybrid systems. All the compositions were prepared by melt mixing using a miniature mixer. The mixtures were characterized by Fourier transformed infrared (FTIR), wide angle X-ray diffraction (WAXD), thermogravimetric analyses (TGA), scanning and transmission electron microscopy (SEM and TEM, respectively) and volume electrical resistivity. For the binary PVDF/PPy and PVDF/MWCNT systems, percolation thresholds of 10 and 0.3 wt%, respectively, were found. In the hybrid systems, however, the percolation threshold for each filler was lower than in the binary systems, but the electrical conductivities were always much higher at all concentrations than the conductivities of the binary systems. Therefore, the addition of both fillers had a synergistic effect on the hybrid system conductivity, which was attributed to its morphology: the PPy increased the homogeneity of the MWCNT distribution and decreased the available free volume for the MWCNT; as a result the MWCNT rolled around the PPy particles bridging them through the PVDF matrix, increasing the quantum tunneling effect and thus, the electrical conductivity of the system.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号